Technical Report No: 06/02

Refining Specifications to Programmable Logic

Adrian Hilton
Jon G. Hall

31 October 2003

Department of Computing

Faculty of Mathematics and Computing
The Open University

Walton Hall,

Milton Keynes

MK7 6AA

United Kingdom

http://computing.open.ac.uk

TheOpen
University

Electronic Notes in Theoretical Computer Science 70 No. 3 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume70.html 13 pages

Refining Specifications to Programmable Logic

Adrian Hilton™

Prazis Critical Systems Ltd
20 Manvers St., Bath BA1 1PX

Jon G. Hall?

The Open University, Walton Hall
Milton Keynes MK7 6AA, UK

Abstract

Combined hardware/software systems are increasingly being used for safety-critical
systems, with hardware taking processing load off the software. To attain the
necessary safety integrity levels, new safety standards require that the correctness
arguments for safety-critical hardware and software are developed together with the
same rigour as for software alone.

In this paper we describe work in progress on the continuing development of
such a notation and proof system. Based on process description using Synchronous
Receptive Proof Theory, we propose refinement rules for developing a specification
into an SRPT implementation.

As illustration, we demonstrate the full formal refinement of a 2% bit carry look-
ahead adder into a Pebble implementation, and test the implementation.

1 Introduction

Programmable logic devices (PLDs) are increasingly important components
of complex and safety-critical systems. Standards such as the emerging UK
Defence Standard 00-54 [9] and IEC 61508 [§] now require developers to rea-
son about the safety and correctness of programmable logic devices in such
systems. In particular, UK Defence Standard 00-54 requires the ability to
reason analytically about the safety and correctness of programs loaded into
the PLDs using a formal notation and rigorous proof system. In addition,
programming such devices is becoming more like programming conventional

2 Email: ﬁ._g.hall@open.ac.ukl

3 Support from Teleca Ltd. and Praxis Critical Systems Ltd. is gratefully acknowledged.
(©2002 Published by Elsevier Science B. V.

mailto:j.g.hall@open.ac.uk
mailto:adi@suslik.org

HirTtoNn HALL

microprocessors in terms of program size, complexity, and the need to clarify
a program’s purpose and structure.

To address this, in [B] we described a process for developing software for
programmable logic in safety-critical systems with the same rigour as for con-
ventional software for these systems. A key component of the process was the
ability to reason analytically about the correctness of the programmable logic
software.

Much research has established formal refinement as of appropriate rigour
for safety critical systems development ([L1] is a pre-eminent example, dis-
tinguished by its completeness). Our current work focusses on establishing
appropriate rigour for the process; in this paper, we report on a formal re-
finement calculus for high-integrity software running on a system with both a
conventional CPU and programmable logic devices. Through the refinement
calculus, we will be able to address the concerns of rigour.

1.1 Paper Structure

In Section 2 we describe SRPT, show how it can be used to describe logic
blocks and how it maps onto the Pebble hardware description language. In
Section 4 we show how to specify SRPT processes and refine them to an
implementation. We demonstrate this in Section 4 with the specification and
refinement of a 2*-bit carry look-ahead adder. Finally we draw conclusions
and outline further work in the field.

2 Synchronous Receptive Process Theory

Synchronous Receptive Process Theory (SRPT) was developed by Barnes and
is described in [2]. Tt is a process algebra in the CSP family. Tt differs from
CSP by being synchronous more than one event may happen at once
and receptive — processes cannot refuse to accept input events.

An SRPT system consists of a set of events X and a set of processes { P; }.
Each process P has an input alphabet P C ¥ and output alphabet oP C X
which must be disjoint; their union non-null. To make the link with PLDs,
the occurrence of events in ¥ will represent a high on an appropriate input or
output line.

Each process P has associated with it a minimum-delay length £ > 1. At
each time step t, process P observes which events in ¢P have occurred. At
time t + k it outputs a subset of 0P which may depend on any previous ¢P
events at or before time ¢.

A process has full control over events in its output alphabet but no control
over events in its input alphabet. Processes communicate by sharing events.
An event in oP and ¢ () allows P to send information to (), but not vice versa.
No event s € ¥ may appear in the output alphabet of more than one process.
This corresponds well to our input line/output line interpretation.

2

HirTtoNn HALL

2.1 Notation

Processes are defined using the following grammar. It has been restricted from
[2] for this paper; we require only those components relevant to the modelling
of synchronous logic blocks.

P:= x € Var process variable
| [!O?X — Px]output prefix
| P | P parallel composition
| P\ O hiding
|

P[S] renaming

We do not define the semantics of the operators formally; however, the
following informal description will suffice for this paper: z € Var is a process
which is made explicit when we bind variable names to the space of processes.
P\ O behaves the same as P, but all the events in 0o N O are hidden. P[S]
renames the input and output events of P with the bijective renaming function
S ¥ — X. The parallel operator allows a number of processes to proceed
in lockstep. They may share events to communicate, as noted above. The
output prefix form can be read as ‘output events O, receive input events X
and then behave like Py.’

When we later use expressions for choice of process in the output form,
this corresponds to binding process variable names to elements in the process
space.

2.2 Semantics

Barnes defines process semantics in terms of their possible traces i.e. the set of
sequences of sets of events which they produce. As usual in such approaches,
traces are prefix-closed; however, there is an additional constraint that the
environment can offer any subset of input events at a given step, and the
output at that step must be independent of the input at that step. Of course,
in general, subsequent behaviour may depend on that input.

The traces of process P are denoted 7x[P]. The space of processes is
denoted RM. SRPT defines a semantic function Mg : SRPT — RM, where
each process P with variable binding ¢ is mapped to its input and output
alphabets and traces:

Mz[Plo = ([Plo, o[Plo, Tr[P]o)

Barnes defines the functions ¢, 0 and 7 over the syntax of the non-
recursive terms of SRPT, and then extends Mz to cover the recursive terms.
The details of the formal semantic model of SRPT are omitted for the sake
of brevity; the interested reader is referred to [2, §5.3-5.4]. The semantics are
relatively simple since SRPT need not handle the concept of refusing events.

3

HirTtoNn HALL

2.3 Equivalence

Two processes P, () with identical trace sets are considered equivalent.

P and @ are observationally congruent, according to Milner, if F(P) is
observationally equivalent to F(Q) for any environment F. In SRPT, this
environment corresponds to a sequence of subsets of process input events.

If P and () are equivalent then they must have the same input alphabet,
since by the trace well-formedness rules any event in the input alphabet may
be offered at any step.

Since we have banned non-determinism, an environment F = (Fy, Fy,...),
where F; C P, determines exactly the subset of traces Sp C Tg[P] which
may be observed from P in that environment. Sp is then defined by:

se€Sp=Vi>0-(s[i|NP)=F,

Since P = 1@ and TR[P] = Tr[Q], So = Sp and hence P and @ are
observationally congruent.

2.4 Transformation to Implementation

One reason for choosing SRPT as a description language was its closeness to
the Pebble hardware description language [7]. Pebble is a simple structural
language used to program reprogrammable logic devices. The basic corre-
spondence is between the SRPT process and the Pebble block. Events in
the alphabets of process P correspond to the WIRE parameters of the block.
Hidden events correspond to block internal wires.

Parallel processes correspond to a block instantiating a number of other
blocks, connecting them by relating input and output wires in the same way
that the processes share events. A renaming corresponds to a single block
instantiation with the instantiation parameters defining the renaming.

The output prefix process form may be parametrised by a function of the
previous inputs. An example would be a latch, where the output would depend
on the last input which set the latch’s value. This is translated into Pebble by
a state-generating block, feeding into a lookup table block to generate the
outputs and back into itself to change state.

3 Specification and Proof

Specification of digital logic circuits has been made by a wide range of for-
malisms, for instance CSP [4] and its timed and synchronous variants. Clocked
circuits may be modelled algebraically by models such as CIRCAL [§].
There are many approaches to refinement; for instance, see Back [1] and
Morgan [10]. Of particular relevance to our approach in being based on reac-
tive action systems is the refinement of Back [1]. There, refinement is defined
in terms of traces. We follow a broadly similar form in our semantics, although

4

HirTtoNn HALL

the deterministic nature of our SRPT subset means that we avoid some of the
complications encountered by Back.

3.1 Specification frame

Refinement takes an abstract specification to a syntactic form which may
be implemented directly. The syntactic form of our abstract specification is
similar to that of Morgan:

1X oY :[[prel: [post i)

representing the specification “for the process with input alphabet containing
X and output alphabet containing Y, (at all times t) if pre is true at time
t then at time ¢+ k post is true.”ifi ¢ and k are necessary because an SRPT
process computes in a ‘pipelined’ (systolic or overlapping) manner; ¢ marks a
point where a computation starts and &k expresses the length of the pipeline
which produces the result. A specification clearly defines a set of traces and
so can be considered an SRPT process (if an abstract one!). Our job is to
synthesize a concrete SRPT process that has the same traces.

As an example, a 1-cycle AND gate with input events X = {zy, 25} and
output events Y = {y} would have precondition true and postcondition

(21 A 12 = (Y]

The possible traces of this process include:

<{$1}, {1,‘1, IQ}: {1:27 y}>7 <{$1, IQ}: {xla T2, y}a {y}>7 <>

An example of an incorrect trace is ({21}, {12, y}).
The following rules apply to the frame:

(i) pre may only relate variables in X.
(ii) the postcondition post may relate variables in both X and Y.

(iii) the highest time index of a variable z in pre must be less than the lowest
time index of an output variable y in post, where the time indices of z
and y share a common quantified time variable t.

(iv) where variables [z € X];4,; and [y € Y]y, are related in post, i < j.

3.2 Refinement Relation

Following Back [1], for processes P and @, the refinement relation P C @ is
defined over the process trace sets as:

Tr[Q] € Tr[P]
4 Indeed, we define the notation [A]; to mean A evaluated at time ¢

5

HirTtoNn HALL

i.e. any valid trace of () is a valid trace of P.

Given a specification S = X : oY : [[pre];, [post]iix], we define its
traces Tg[S] as:
(1) e Tr[S] & V0 <t < (#f —k)-[pre(f)]: = [post (f)]ix

If we are to refine S into processes then we need to show that F' = 7Tz [S]
satisfies the SRPT closure conditions. We also need to show that at any step
the process represented by F' can accept any input, and the input cannot affect
the output at that step.

The empty trace () is trivially in F. F is prefix-closed since if f € F' and
f=s~(Z) then

VO<t<((#f—k)—1)-[pre(s)]; = [post (s)]iix

and #s — k= (#f — k) — 1.

To demonstrate that the process represented by F' can accept any input at
any step without affecting that step, let f = s —~ (Z). Since f € Tg[[F], the
RHS of Equation 1; must hold. Then let r = s ~ (VUU) where V = (ZNY)
is the set of output events at that timestep and U C X is any set of input
events. We need to show that r € Tz[[F].

Since s prefixes f, we know that s € F. We need then only show that:

[pre (1) gr—gesn) = [POSE (1)] o1

The rules on pre- and post-condition time indices restrict post from spec-
ifying outputs at ¢, or from ¢ + k£ onwards, and similarly restrict pre from
specifying inputs from ¢+ k—1 onwards. Hence any events in U (at time index
#r — 1) cannot affect the precondition. The output events V' do not change
from f to r, hence the postcondition is similarly unaffected, and therefore the
third closure condition is met.

This allows us to treat process specifications as actual processes in the
following refinement rules.

3.3 Refinement Rules

The refinement calculus we define is of a form similar to Morgan [17]. It is
based on the following rules, which allow a more abstract description to be
replaced by one closer to SRPT processes. These rules form the basis of the
formal transformation from specification to code, and so are crucial to the
definition of the high-integrity transformation. Later in the paper, they are
applied to a case study which shows precisely how a PLD can be refined from
a high-level specification.

A number of other rules (e.g. weaken precondition, strengthen postcondi-
tion, expand frame) have been defined, but are omitted here since they are
not used in our example.

HirTtoNn HALL

Refinement 1 Stateless 1-bit function
If process CELLy defines a stateless 1-bit cell executing logic function f:
tCELL; = A, oCELL; = {y}

CELL(R) = [[R?X — CELL;(f(X N A))]
CELL; = CELL(0)

then:
LA o{y} : [true, [y]i1 = [([A]4)]
C CELL

Variants of CELL are the basic constructors of combinatorial logic as they
are a representation of primitive blocks in Pebble. This law is then key to
turning a specification into a SRPT process.

Refinement 2 Parallelism

If there are two parts of the output of a process which are independent then
the process can be split into two, each computing one of the parts. More
formally: if post; and posts share no input or output variables, then

X :o(YUZ):[pre, post; A post s
C.X :0Y :|[pre, post]
| 1L X : 0Z : [pre, post,]
Refinement 3 Contract frame

If some of the input variables are irrelevant to the outputs, we can remove
them. More formally: if all of the input variables of post are contained in B
then

(2) 1X : oY :[pre, post]
C.:XNB:oY :[pre, post]
Refinement 4 Introduce intermediate

We may split a process for which an ‘intermediate calculation’ exists. More
formally:

9([Y Jera, [X1e) = R([Y]era, [2]142) AJ([2] 011, [XT)

implies

L X oY i [pre, g([Y]ite, [X])]=(Z : oY : [true, k([Y]ii2, [Z]i41)]
]

| eX : 07 : [pre,j([Z]ien, [X],
\ Z

)

where = means “refines in both directions”. This is an example of where two
processes are the refinement of each other.

7

HirTtoNn HALL

A2 B2
—— All |B1
CLAA(0)| [CLAA(1) CLAA(0)
R2| R3| c R1
|
MUX PASS
C2| C1

Fig. 1. Carry look-ahead adder structure

3.4 Refinement Process

The refinement process starts with a specification, but its end is less well
defined. We need a concept of what is an implementation. This will depend
on the basic components of our target device.

For a conventional programmable logic device, a basic component is likely
to be a cell which computes a logic function of a small number of inputs
and outputs the result at the next time step. More complex PLDs may also
incorporate latches and small blocks of ROM or RAM.

At the start of the refinement we must list the processes which we regards
as “terminal” i.e. directly corresponding to a PLD component. The refinement
is complete when every part of the specification has been refined to a terminal
process.

At the end of the refinement we will transform each terminal process into a
PLD component, connect them appropriately according to the shared events,
and assert that this PLD program satisfies our original specification.

4 Carry Look-ahead Adder

As a demonstration, we will specify and refine a 2*-bit carry look-ahead adder
where our primitive blocks are stateless 1-output cells with 2 or 3 inputs.

4.1 Definition

A carry look-ahead adder is an adder which is optimised for execution time
rather than area. It works by splitting an addition into two halves (high and
low bits), and carrying out two calculations for the high bit one for if a carry
is received, one for if it isn’t. A multiplexer then selects the correct high bits
calculation.

Figure 1, shows a possible structure of one of these devices. This is the
structure that we shall aim to develop in the following refinement. In the
figure, each CLAA(z) denotes a half-size carry look-ahead adder; the structure
is recursive.

HirTtoNn HALL

4.2 Specification
For an n = 2* bit adder, CLAA,, the specification is:

(AUB):oC :[true,[N(C)|iy141 = [N(A) + N(B)|,]

where N(X) maps the subsets of X onto the natural number given by the
binary representation of the events. A and B must contain n events, ' must
contain n + 1.

We will in fact find it useful to specify and refine the processes CLAA ()
for € {0, 1}, where z is added onto the end result.

Note that the specification requires that the computation complete in 1 +
k time steps. A simple ripple-carry adder could not in general satisty this
specification since it takes time linear in 2% to complete.

4.3 Basic Gates

If we set k to 0, and hence n to 1, we get a half adder:
HADD = «{a, b} : o{c, s} : [true, [2¢ + s];41 = [a + b]{]

which may be implemented with a pair of stateless 1-bit functions. We note
that this takes two of our 2-input, 1-output cells. We assume that the only
cells available for construction are 2-input, l-output and 3-input, l-output.
This will restrict what we regard as “final code” in our refinement.

We will also want a pass gate (for delays) and a 1-bit choice gate. These
have the following specifications:

PASS = {z} : o{y} : [true, [y]i41 = [z]]

MUX = u{a,b, c}: o{y} : [true, [y]is1 = [(bA) V (a A =c)]y]

4.4 Refinement

We proceed by induction on k. We assume that we have complete implemen-
tations for all processes CLAA.(y) for y € {0,1}. Let n = 2*. Now we start
with specifying CLAA1(z):

(AUB):oC :[true,[N(C)|iiorr = [N(A) + N(B) + z|,]

Let A = A1UAy where A1 = {ai,...,a,} and A2 = {ay41,..., az, }. Define
By, By, Cy similarly and Cy = {¢y41,- .., Cony1}- From now on we abbreviate
the arithmetic by referring to direct addition of event sets. The above equation
then rewrites to:

HirTtoNn HALL

L(Al U A2 U B1 U BQ) . 0(01 U 02) .
[true,
[Ol]t+2+k = ([Al + Bl + I]t) mod 2 A\

[02}t+2+k = ([Al + Bl + f]t) div2 + [AQ + Bg]t }
Applying Refinement Law 4 we introduce the intermediate event set (R; U

Rs U R3 U {c}), the components of which have respective sizes n, n+1, n+ 1
and 1. The above then rewrites to:

(L(A12UByg):o(RiosU{c}):

| true,
[Ri|i+146 = ([A1 + B1 +2z];) mod2 A
[Role4146 = [A2 + Bol: A
[Rs]ts14x = 1+ [A2 + Bals A
[lesree = ([Ar+ B+ 2l div2 (1)

| e(Rrp3U{c}): 0Ci2:

[true,
[Ch]e41 = [Rals A
[Clii =[(BsAc) V(B2 A=c)]e](2)

)\ (RizsU{c})
To show that this refinement is correct we need to show that the values
for C7 and Oy are equivalent before and after the refinement.

[Cl]t+1 = [Rl]t
[Br]e4140 = ([A1 + Bi + 2];) mod 2
= [Cl]t+2+k = ([Al + By + J?]t) mod 2

[Calria = [(R3 A) V (B2 A =)y
[Ro]iv1+x = [A2 + B

(Rs)it146 = 1+ [A2 + Boly
[c]t14n = ([A1 + By + z];) div 2

= [Cy]441 = [A2 + Ba]t + ([A1 + Br + z]4) div 2
which is as required.
We take each of the refined processes in turn for further refinement.

10

HirTtoNn HALL

(1) C (via Refinement Law Y) :
(AUB):o(RU{c}):
[true,

[Rl]t+1—|—k = ([Al + Bl + x]t) mod 2 A

¢ = ([A1+ By + z];) div2 1 (3)
| (AU B) : oRy :
[true, [Rg]t+1+k - [A2 + B2]t] (4)
| (AU B) : oR3 :

[true, [Rg]t+1+k =1 + [AQ + Bg]t] (5)

Here (3), (4) and (5) are equivalent to processes CLAA(z), CLAA(0) and
CLAA(1) respectively. We can contract the frames to remove A;, By from
(4), (5) and Ay, B, from (3).

(2) C (via Refinement Law) :
L(Ri23U{c}):0Ca:
[true, (Gl = [Rals | (6)
| (23U {c}):0Cs:

[true, [Co]ipr = [(R3 A ¢) V (Ry A=)y] (7)

(6) is equivalent to n parallel PASS cells between Ry and Ci. (7) is equiv-
alent to n + 1 parallel MUX cells, choosing from Ry and R3 using c, sending
to Cy. Again we can contract frames to remove Ry 3 from (6) and R; from (7).

We can now collate the refinement components to produce:

(AUB):oC: [true, [Clijo4r = [A+ B + x4
L

(CLAA(z)[A1, Bi][Ry, ¢] (3)

I CLAAR(0)[As, Bo][Ry (4)

I CLAAL(1)[As, Bo][R ()

iy PASS[ri][c:] (6)

||?:+11 MUX [rutis Tontis €] Cntil (7)

) \ (Ri23U{c})

11

HirTtoNn HALL

5 Discussion, Conclusions and Further Work

We have combined the process model of Barnes’s Synchronous Receptive Pro-
cess Theory with a modified form of Morgan’s refinement calculus syntax to
produce a refinement calculus of our own. This enables time-based specifi-
cation of process behaviour and refinement to an implementation in simple
processes. There is a clear map from these processes to implementations in a
language such as Pebble.

With a relatively short formal derivation we have produced a full im-
plementation for a family of arithmetic functions, parametrised by size, and
demonstrated that the calculations complete in the specified time. This has
been done using a predefined set of simple gates HADD_ PASS, and MUX.

5.1 Proof means no testing?

Bearing in mind Knuth’s famous quote “Beware of bugs in the above code; 1
have only proved it correct, not tried it” [§] we implemented the above struc-
ture in a simple Pebble simulator written in Perl and tested it with random
input data.

Knuth was proven prudent. In the original refinement, (3) had mistakenly
been asserted equivalent to CLAAL(0) rather than CLAA(z). The tests
detected this, it was corrected, and the tests rerun. No errors were found
in the corrected version for values of £ from 0 to 5.

This is more a comment on the methodology that we used to arrive at our
starting point rather than the subsequent refinement. In essence, no matter
how good a refinement, it can only be as good as the starting specification from
which it was derived. To validate a system against its specification requires
testing, as no internal ‘fitness for purpose’ test can be sufficient.

5.2 Further Work

The small set of refinement rules given above is suitable for simple processes,
but more complex refinements will benefit from more powerful and expressive
rules. We are developing the design of a substantial PLD construct and will
be using this experience to gain insight into the forms of expression which we
need to specify and refine.

References

[1] Ralph-Johan Back and Joakim von Wright. Trace refinement of action systems.
In International Conference on Concurrency Theory, pages 367-384, 1994.

[2] Janet E. Barnes. A mathematical theory of synchronous communication.
Technical report, Oxford University Computing Laboratory, 1993.

12

HirTtoNn HALL

[3] Adrian Hilton and Jon Hall. On applying software development best practice
to FPGAs in safety-critical systems. In Reiner W. Hartenstein and Herbert
Grimbacher, editors, Proceedings of the 10th International Conference on Field
Programmable Logic and Applications (FPL’00), volume 1896 of Lecture Notes
In Computer Science, pages 793-796. Springer-Verlag, August 2000.

[4] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, 1985.

[5] IEC Standard 61508, March 2000. Functional Safety of Electrical / Electronic
/ Programmable Electronic Safety-Related Systems.

[6] Donald E. Knuth. Notes on the van Emde Boas construction of priority deques:
An instructive use of recursion. Memo to Peter van Emde Boas, March 1977.

[7] Wayne Luk and Steve McKeever. Pebble a language for parametrised
and reconfigurable hardware. In R. Hartenstein and A Keevallik, editors,
Proceedings of the 8th International Workshop on Field Programmable Logic
(FPL’98), volume 1482 of Lecture Notes In Computer Science, pages 9 18.
Springer-Verlag, September 1998.

[8] G. McCaskill and G. Milne. Hardware description and verification using the
CIRCAL system. Technical Report HDV-24-92, Department of Computer
Science, University of Strathclyde, June 1992.

[9] Interim Defence Standard 00-54 issue 1, March 1999. Requirements for Safety
Related Electronic Hardware in Defence Equipment.

[10] Carroll Morgan. Programming From Specifications. Prentice-Hall, second
edition, 1994.

[11] E.-R. Olderog, Anders P. Ravn, and Jens Ulrik Skakkebaek. Refining system
requirements to program specifications. In Formal Methods for Real-Time
Computing, pages 107 134. Wiley, 1996.

13

