
T e c h n i c a l  R e p o r t  N o :  2 0 0 2 / 0 7  
 

Targetting PLDs for high-level High Integrity Systems 
Development 

 

Adrian Hilton 
Jon G. Hall 

 
 
 

 
 

2002 
 

 
Department of Computing  
Faculty of Mathematics and Computing 
The Open University  
Walton Hall,  
Milton Keynes  
MK7 6AA  
United Kingdom 
 
http://computing.open.ac.uk 

 

l  



Targetting PLDs for high-level High Integrity
Systems Development

Adrian Hilton and Jon Hall

The Open University

Abstract. Combined hardware/software systems are increasingly being
used for safety-critical systems, with hardware taking processing load off
the software. We have produced a design template that allows SPARK
Ada, a programming language used for safety-critical systems develop-
ment, to be compiled and interpreted on programmable logic devices.

In this paper we describe a high-integrity PLD-based interpreter for com-
piled Ada code. The intention is to allow developers to select sections
of a SPARK Ada program to be interpreted on hardware, rather than
run in software, in parallel with the rest of the program running on a
conventional CPU. This extends the reach of high integrity systems de-
velopment to encompass PLDs.

Topic Areas: Theory, Mapping and Parallelization; CAD

Keywords: Ada, safety-critical, FPGA, PLD, compiler

1 Introduction

In [3] we argued that programmable logic devices were becoming an important
component of safety-critical systems, taking processing load off the conventional
CPU-based software. To this end we proposed a formal methods based develop-
ment process for PLD and FPGA programs suitable for systems of the highest
safety integrity levels (SIL-3 and SIL-4).

A key component of this process was the use of the SPARK Ada high-integrity
programming language as a high-level specification language for PLDs. In this
paper we describe work in progress on the use of SPARK Ada as a suitable
high-level language for programming, directly, PLDs.

The approach depends on the high-integrity nature of SPARK Ada, which
it preserves. Therefore, using our development path, SPARK Ada programmed
PLDs are suitable for use to the highest integrity levels. In addition, by con-
structing an effective high-level language compiler we simultaneously make pro-
gramming PLDs a simpler task. The gains in time-to-market reductions could
be comparable to those made in software now that assembly language has been
all but replaced by languages such as C, C++, Java and Ada.

Importantly, we do not have to restrict the parallelism present in a SPARK
Ada program: coarse-grained parallelism is managed at the level of the CPU-PLD
interface; fine-grain parallelism is managed by instruction dependency relations
derived from the SPARK data-flow information.



Section 2 gives a short introduction to SPARK Ada. In Section Section 3.3
we show how specific sections of a conventional program written in SPARK Ada
can be compiled directly into a PLD with no alterations to the remainder of the
program. Section 3 details the design of an interpreter executing simple opcodes.
The design depends crucially upon the features of SPARK Ada which contribute
to the simplicity and dependability of the interpreter. Through an example, we
show the correspondence between SPARK Ada constructs and opcodes. Finally
we describe on-going and further research work planned in this area.

By ‘PLD’, unless specifically mentioned otherwise, we include FPGA and
CPLD.

2 SPARK Ada

SPARK Ada 95 (shortly SPARK) is an annotated subset of the Ada language,
as defined in the Ada 95 Language Reference Manual [4, 1]. The use of SPARK
for safety-critical system development has been widely validated; for instance,
the development process of the SHOLIS helicopter landing guidance system,
fitted to the Duke-class Type 23 frigates, made substantial use of SPARK. The
development was run under UK Defence Standards 00-55 (software) [8] and 00-56
(system safety). A subsequent study [5] found that the use of SPARK enhanced
confidence in the system’s reliability.

Of relevance to the development of safety-critical systems, SPARK supports
substantial static analysis of programs including strong typing, proof of absence
of run-time exceptions, data and information flow analysis, and proof of cor-
rectness in the form of pre- and post-conditions on subprograms. Because of the
expressive mismatch between SPARK and PLDs, we must be able to tightly
constrain expression in the source language. Fortunately, these constraints are
statically checkable properties of SPARK programs; SPARK is, therefore, par-
ticularly suited to the role we have chosen for it.

The constraints we require are listed them here for future reference:

1. the package and subprogram calling orders forms directed acyclic graphs;
2. no type conversions or expression evaluations will overflow the containing

type;
3. loop exit points are restricted;
4. data flow for each statement and subprogram is known at analysis time;
5. all variable types are known at analysis time;
6. all type sizes are known at analysis time; and
7. it is free of run-time exceptions.

A SPARK program that satisfies these criteria we will call well-formed. The
starting point for the work of this paper is a well-formed SPARK program.

2.1 From SPARK to PLD

We begin with a (well-formed) SPARK program together with an identified set
of packages therein (the target list) that are to be implemented in programmable



logic. The full program transformation process is illustrated in Figure 1 for a
single package P within a program Program. (By sans serif terms in the following
we indicate elements of the figure.)

P i/f

P Analyse

Program Var place

Expressions

Instructions

I/O

Compile

interpreter
Pebble

Fig. 1. Program transformation

To generate the replacement code, the package contents are analysed to iden-
tify subprograms, variables, types and loops. From this analysis, transformation-
time decisions are made about pipeline and storage widths and lengths, and the
replacement interface for P (P i/f).

The end point of the transformation is another SPARK program in which
each of the packages of the target list has been replaced with new SPARK code.
The new code has identical specifications and control and data flow annotations
to the original code which means that the operational semantics of the original
and transformed code are the same. The new code, however, places variables,
transforms expressions and instructions, and manages communication with the
PLD, sending and receiving data via memory-mapped I/O and on-PLD I/O
handlers to replicate the Ada subprogram calling process.

The transformed package is then compiled as a separate block on the PLD;
data lines link packages together, and a block on the front of the FPGA manages
communication with the CPU. Package and subprogram variables are sized and
placed in a local RAM block. Each Ada expression is transformed to a specialised
block. Code within subprograms is compiled into a small set of opcodes and data
to be stored in a ROM block within the appropriate package.

P i/f, which replaces package P, is a proxy that manages communication
with the PLD of the compiled P. Communication may be synchronous (awaiting
returned data) or asynchronous (starting a computation and polling for comple-
tion) depending on system requirements.

The outcome of this transformation process is a Pebble program, representing
the interpreter, which can be interpreted in a simulator or further compiled
into a device. We next describe the architecture and behaviour of the combined
software/hardware system.



3 Interpreter architecture

We model a generic programmable logic device as a set of cells — each of which
can compute a simple logic function — and a set of RAM and ROM blocks of
configurable size. We assume a single clock across the entire device.

This model was adopted for simplicity, and fits well with the Pebble hardware
programming language [6]. Pebble can be compiled into VHDL or directly onto a
chosen target device, and the Pebble program model makes it easy to configure
programs according to the primitive gates available on a particular device. It
gives us a way to map our interpreter onto existing devices without writing an
extra compiler stage.

In this section we show how a package is transformed into a form suitable
for the interpreter. We assume that packages A and B are inherited and directly
used by package P, with other packages C and D inherited by P but not used
directly. These packages constitute the target list for an enclosing program. In
Section 3.3 we give an example of the internal structure of a subprogram in
package A.

RAM

CPU

ROM

PLD

P

B

A

BUS

C

D

Fig. 2. Interpreter Architecture

The architecture of the interpreter determines the form that the compiled
code will take. For our example program Program, the resulting interpreter ar-
chitecture is illustrated in Figure 2. It is based on PLDs linked by a bus with a
conventional CPU-RAM configuration, storing the program object code in ROM
as well as interfaces to one or more embedded system devices (typically sensors
and/or actuators). Under the general translation, we allow each PLD to contain
the compiled versions of any number of packages. However, to avoid problems
including deadlock and race conditions, we do not allow two PLDs to commu-
nicate directly. Communication between CPU and PLD is via memory-mapped
I/O.

3.1 The interpreter in action

When Program needs to execute P, it sends a ‘start’ message that identifies a
starting program counter value and a set of start data. It finishes when it reaches
a return-from-subroutine instruction when its program counter stack is empty.



3.2 Input/Output

The flow of data between called and calling package is achieved in a number of
ways:

CPU-PLD CPU-PLD communications can be synchronous or polled asyn-
chronous in either direction. The appropriate form is chosen by the user before
transformation. The CPU-PLD data exchange protocol makes no assumptions
about relative clock timings or the amount of data.

Inter-Package The guaranteed non-cyclic dependencies between subprograms
of packages in SPARK is mirrored in inter-package communications: a package
requesting an event from a sub-package blocks until that event is received. Each
package has an arbitrator on its inputs which only allows access to one caller at
a time.

Intra-Package Access to the ROM containing the instructions is controlled by
a program counter stack. The stack is fixed-size, determined at transform time
according to the number of loops and subprogram calls in the package.

Instructions pass through a decoding pipeline which handles dropping con-
ditional instructions, blocking on unmatched dependencies and routing the in-
struction data to the computation unit matching the opcode. Instructions are of
various lengths.

RAM holds all package variables, internal subprogram variables, actual pa-
rameters, and external subprogram parameters. Strong typing implies that each
variable can have a permanent start address and word length in RAM. Since
subprograms do not recurse, there will never be more than one instantiation of
each subprogram variable. SPARK information about subprogram calling order
means that independent variables can often be overlapped, reducing the required
RAM space.

3.3 Compiled code

Package A actually contained a single public subprogram Closest, with code
given on the left side of Table 1. Closest calculates the closest target in a
list. On the right hand side of table 1 are the compiled interpreter instructions.
(Instructions preceded by c are conditional on the result of the last CMP in-
struction.)

Due to reasons of space we do not fully describe many of the instruction
mnemonics; most are self-explanatory. Of the less transparent are IDXRD a b c
d e, which is an indexed read of element b of variable a into variable e, where c
is the size of the range type and d is the size of the element type. SUBEXT calls
a subroutine in another package; here, subprogram Gap in package C. The third
parameter of a COPY instruction is the number of words to copy.



TList : array(Target) of C.Coord; Package variable
procedure Closest(

Crd : in C.Coord; C.Coord is 8 words
Tgt : out Target; Target is 2 words
Min : out C.Dist) C.Dist is 3 words
--# global in TList;

--# derives Tgt,Min from Crd, TList;

is

D : Dist;

Idx : Target := Target’First; COPY Target’First Idx 2

begin

Tgt := Target’First; COPY Target’First T 2

Min := Dist’Last; COPY Dist’Last M 3

loop LOOP
D := C.Gap(Crd,TList(Idx)); COPY C GAP1 8

IDXRD TList Idx 2 3 GAP2

SUBEXT 1

COPY GAP3 D 3

if D < Min then CMP < D M

Tgt := Idx; cCOPY Idx T 2

Min := D; cCOPY D M 3

end if;

exit when Idx = Target’Last; CMP = Idx Target’Last

cLPEXIT
Idx := Target’Succ(Idx); IDXRD IdxA Idx 2 2 Idx

end loop LPRTN
end Closest; COPY T TOUT 2

COPY M MOUT 3

Table 1. An example compilation of a package to interpreted instructions

This subprogram illustrates most of the basic SPARK Ada control and data
flow constructs. The translation to interpreter instructions was done by hand,
but no difficult computation was needed.

4 Related Work

Previous research has examined the problem of compiling programs from a range
of conventional high-level languages into programmable logic devices (PLDs).
Java [7], C and Ada [10] have all come under scrutiny. Modified versions of
these languages have been adapted with some success; the canonical example is
Handel-C [9] which is targeted solely at programmable logic.

There has been previous work on the specific problem of compiling Ada
programs into hardware. In particular, [11] examined the tradeoffs of executing
an Ada program on a distributed system, noting that a significant difficulty in
the mapping was the undefined behaviour of some Ada programs. Programs in
the SPARK Ada subset may not have such behaviour, so we avoid this obstable.



5 Conclusions

SPARK Ada is a programming language recommended for safety-critical sys-
tem development. In this paper we have shown how its use can be extended
to safety-critical systems that include embedded PLDs. This extends the reach
of current high-integrity software development methods to hardware/software
systems incorporating programmable logic devices.

We have described how a well-formed SPARK program with identified pack-
ages may be transformed into hardware and software components, running on
a conventional CPU and a PLD in parallel. We have described the resulting
architecture of the interpreting PLD, and illustrated the instruction set that is
the target of the SPARK code compilation. The simplicity and modularity of
the interpreter lends itself to straightforward verification.

5.1 Further Work

Our current work is the implementation and testing of the transformation pro-
cess and the SPARK interpreter, including the concommitant proofs of correct-
ness. Further to this, we will develop quantitative and qualitative metrics for
application scenarios, data channel widths, and program size and speed.

Transform-time instruction dependency analysis is key to the effective use of
fine-grained parallelism, and its concommitant efficiency improvements. This is
another area open for investigation.

Placing dependent packages on separate PLDs would be beneficial to reduce
the need for large and expensive PLDs. This will be important if it turns out
that current PLDs do not have sufficient resources for typical SPARK programs.

Acknowledgements

This work was undertaken as part of study for a Ph.D. with the Computer
Science department of The Open University. Financial support from Teleca Ltd.
is gratefully acknowledged.

References

1. Gavin Finnie and Ross Wintle. SPARK 95 – the SPADE Ada 95 kernel. Technical
Report 1.0, Praxis Critical Systems Ltd., October 1999.

2. R. Hartenstein and A Keevallik, editors. Proceedings of the 8th International Work-
shop on Field Programmable Logic (FPL’98), volume 1482 of Lecture Notes In
Computer Science. Springer-Verlag, September 1998.

3. Adrian Hilton and Jon Hall. On applying software development best practice
to FPGAs in safety-critical systems. In Reiner W. Hartenstein and Herbert
Grünbacher, editors, Proceedings of the 10th International Conference on Field
Programmable Logic and Applications (FPL’00), volume 1896 of Lecture Notes In
Computer Science, pages 793–796. Springer-Verlag, August 2000.



4. Intermetrics Inc. Ada 95 Reference Manual International Standard
ANSI/ISO/IEC-8652:1995. U.S. Department of Defense, January 1995.

5. Steve King, Jonathan Hammond, Rod Chapman, and Andy Pryor. The value of
verification: Positive experience of industrial proof. In FM’99 — Formal Methods;
Proceedings, volume 1709 of Lecture Notes in Computer Science. Springer-Verlag,
September 1999.

6. Wayne Luk and Steve McKeever. Pebble — a language for parametrised and
reconfigurable hardware. In Hartenstein and Keevallik [2], pages 9–18.

7. Robert Macketanz and Wolfgang Karl. JVX — a rapid prototyping system based
on Java and FPGAs. In Hartenstein and Keevallik [2], pages 99–108.

8. Defence Standard 00-55 issue 2, 1997. Requirements for Safety-Related Software
In Defence Equipment.

9. Ian Page and Mike Spivey. How to program in Handel. Technical report, Oxford
University Computing Laboratory, December 1993.

10. R. J. Sheraga. ANSI C to behavioural VHDL translator, Ada to behavioural VHDL
translator. The RASSP Digest, 3, September 1996.

11. Richard A. Volz, Trevor N. Mudge, Gregory D. Buzzard, and Padmanabhan Kr-
ishnan. Translation and execution of distributed Ada programs: Is it still Ada?
IEEE Transactions on Software Engineering, 15(3):281–292, March 1989.


