
T e c h n i c a l R e p o r t N o : 2 0 0 2 / 0 9

Beyond Inheritance, Aspects & Roles: A Unified Scheme

for Object and Program Composition

Henrik S Gedenryd

2002

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

l

Beyond Inheritance, Aspects and Roles:
a Unified Scheme for Object and Program Composition

Henrik Gedenryd
The Open University

Milton Keynes MK7 6AA, UK
+44–1908–659 542

h.gedenryd@open.ac.uk

ABSTRACT
The areas of inheritance, aspect-oriented programming and role-
based decomposition share the same problem: For all three, the
number of candidate schemes is large, all of them different and
none of them clearly superior to the rest. Instead of proposing
another variation on any of them, this paper presents a simple,
unified approach to program composition. The scheme is shown
to be compositionally complete, that is, to be sufficient for
defining any program composition that is theoretically possible,
and therefore forms a superset of all other approaches to program
composition. The paper shows how this scheme specifically may
supersede inheritance, aspects, and roles. It goes on to show via
examples how the scheme can be used as a practical object-
oriented language construct. Lastly, it demonstrates how the
scheme can be combined with program specialization to yield
very good runtime performance. This scheme can make object-
oriented languages smaller, yet substantially more powerful and
expressive than they currently are.

1. MOTIVATION
diverging approaches
The topics of inheritance, aspect-oriented programming and role-
based design each have a huge literature devoted to them. From
the early days, inheritance has been known to be imperfect [24];
its various problems are well documented [9, 14, 37], and a large
number of variations [8, 9, 25, 35] and alternatives [18, 24, 32,
40] have been proposed. However, rather than offering a
resolution or identifying a winning candidate, the various
approaches have diverged so that no clearly superior alternative is
available today, especially not if simplicity is desired.

In aspect-oriented programming (AOP) there are also a number of
different solutions to similar but not identical problems [11, 15,
27, 28, 31, 39]. And beyond this divergence, there is a lack of
well-defined foundations. The central concepts of AOP, such as
“aspects” or “crosscutting”, have not been well articulated, and
the formal basis of AOP seems not to have been addressed: Just
what is it that AOP allows us to do that we otherwise cannot do,
and what added formal powers do AOP extensions bring to a
language? In contrast, general-purpose programming language

constructs usually have well-defined semantics and formal
foundations. These are the properties whose absence tends to
prevent specialist techniques from being adopted as dependable
and widely applicable solutions.

Finally, role-based design and problem decomposition are
probably as old as object-oriented programming itself, even
though the technique has only been gradually articulated over the
years [2, 5, 19, 41]. However, roles typically lack language
support and their application therefore requires compromises or
the use of roundabout techniques [26, 41]. It is also worth noting
the great family resemblance of the various techniques
surrounding roles, aspects, perspectives [6, 9, 18, 24], subjects
[34, 36], and so on. So also here, like in the two previous areas,
the divergence of approaches and lack of a clear resolution is
holding back widespread adoption of any solution.

1.1. A proposed resolution
The object of this paper is not to present yet another variant of any
of these schemes. Instead, the key idea behind it is to take a step
back to recognize that all of the above techniques are different
approaches to composing programs and objects. What if we try to
address the problem of program composition in general, once and
for all? If we found such a scheme, it would be able to supersede
all of the above approaches. The answer to this question is the
actual topic of this paper—a simplest, yet fully comprehensive
approach to composing objects and programs.

Still, the purpose is not to present a highly sophisticated and
complex solution to a very hard problem. On the contrary, the aim
is to show that the problem is much less difficult than it might
seem. To obtain a general but also simple solution, the chosen
strategy was to reduce the necessary ingredients to their essence,
and then to allow them to be applied in the most general way
possible. A beautiful example of this approach was the
demonstration that only two language constructs (if…then and
while…do) are needed for describing any Turing machine [7].
This demonstration was essential to the development of structured
programming, and it shows how very simple but sufficiently
general elements can be used to generate very complex results.
Moreover, it also shows that simplicity itself is the key to
achieving this generality. Clearly, this work set a standard that the
present work could merely aspire to attain.

The following section introduces the view of composition that is
taken here, and shows how inheritance and aspect-oriented
programming can be expressed as program composition. It
thereby lays the groundwork for the demonstration of
compositional completeness that follows it. The next section
describes the practical programming approach that results from
the theoretical principles, and this is also where role-based design
enters the picture. The remainder of the paper gives some example

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

applications of the resulting approach. The final example
addresses an extremely performance-sensitive application. It
illustrates how this scheme can be used to obtain very well-
structured designs and highly decomposed implementations
without sacrificing runtime performance.

2. Composing programs by assembling parts
into new wholes

The view of objects and programs as compositions is essential for
the demonstration of compositional completeness. The aim of the
present section is to make the reader accustomed to this point of
view before taking on the more theoretical discussion.

2.1. The Concept of Composition
Since the term composition is so central to this effort, it deserves
to be clarified: The act of composition is the building of complex
entities by assembling distinct part entities to form new whole
entities. The composition of an entity is synonymous with the
structure of an entity, and refers to the part–whole relationships
between an entity and its sub-elements. Conversely,
decomposition refers to breaking a whole down into parts.
Compositions are conventionally drawn as box-and-arrow
diagrams, where “whole” boxes have arrows pointing to their part
boxes, or alternatively as with trees, use plain lines instead of
arrows whenever parts are always placed below their wholes
(figure 1).

There also ought to be a single name for the elements that are
composed; however, all the good names have already been
claimed for various purposes. The best candidate would otherwise
be component, as the meaning of this term is simply “an element
in a composition”. Instead I will mostly use the term part, as it is
succinct and clear—you build things out of parts—and not
heavily associated with any specific technical meaning.

Whereas composition concerns the structural view of software,
the complementary view concerns content—without it, any
composition is just an empty structure with no capabilities, and
conversely, the composition puts together trivial content
primitives into more complex, higher-level capabilities. The
content primitives of software are state (data) and behavior (code)
primitives. The distinction between structure and content is the
same as the one between syntax and semantics.

This paper will focus on the composition of objects, which easily
generalizes into the composition of programs in general. In pure
OO languages the reason is straightforward: since everything is
an object, general object composition is sufficient to compose
every element of a program, including modules, name spaces, etc.
In non-pure OO languages such as Java and C++, the same
principles will have to be repeated for the non-object language
constructs.

The fundamental form of object composition is that an object
refers to other objects via its instance variables, or slots following
Self terminology [40]. This is how you define part–whole
relations between objects, and in this particular respect objects are
similar to records in non-object-oriented languages. This type of
composition uses the most well-known composition principle for
software, hierarchical composition, which allows the building of
tree structures. Such structures can be described by context-free
grammars [30], which consist of a number of rules of the form
Whole → Part1, Part2, … PartN.

origin

Rectangle

corner

Figure 1. A basic part–whole composition:
an object with two slots.

2.2. Inheritance as Composition
The next step to understanding object composition is to reinterpret
inheritance as a form of composition. The contents of any class
(state and behavior) are composed from the contents of its
superclasses, i.e. the elements in its inheritance graph. However,
inheritance relations are not normally drawn as the inheritance
graph of a single class, but as class hierarchies, which show how
several classes are related to each other by inheritance (figure
2a).From this class hierarchy we need to extract the inheritance
graph of a single class. In the case of single inheritance, this is not
a tree, but always a linear chain connecting the class and its
superclasses. Furthermore, to follow the convention of always
having the root of a composition at the top of the diagram, we
need to turn this graph on its head (figure 2b). This view implies
that in some sense the superclasses should be regarded as parts of
the derived subclass. This finds support in a version of the same
diagram where the objects’ memory layouts are explicitly drawn
(figure 2c). This version shows that the super slots contain the
actual links from subclass to superclass (also, dashes indicate that
some parts have been left out).

Since we are interested in the composition of objects, not just
classes, figure 3a adds the actual composed object at the top of the
composition diagram. It also makes the class field explicit, to
show that this slot is no different from other slots from a
compositional point of view, even though it is typically treated
differently (for good reason). Figure 3c displays the same
composition as figure 3c, but no longer in the memory-layout
format. The dashed outline marks the most important parts of the
object’s composition. At this point, the inheritance graph has been
“normalized” so that the special semantics of inheritance that is
unrelated to composition is ignored, and only the part–whole

Figure 2. Inheritance as composition I: (a) Class hierarchy. (b) Inheritance graph. (c) Object format.

 super *Rectangle

Shape

Object

PolygonEllipse Object

Shape

Rectangle

Object

Shape

Rectangle super *

 super *

compositions of object, class and superclasses are expressed in
the diagram. That is, the class and superclasses are drawn as any
other elements in the composition of the object. As a result, figure
3c represents the object purely in terms of parts and subparts; this
is the purely compositional view of the object and its inheritance.

2.2.1. De-encapsulation
The remaining element to explain is the asterisks that mark the
superclasses in these diagrams. This is the same convention that is
used in Self, for designating “parent slots” or “shared parts” [10].
Although the effect is the same, here its meaning will be slightly
generalized, to indicate de-encapsulation of the marked entity.
Since encapsulation is essential to object-oriented composition,
the regular part objects (as referenced by instance variables, slots,
etc.) do not share their contents with the owning object they are
part of—they encapsulate their contents. In Smalltalk, for
example, the owner object cannot access the contents of its
instance variables except by ordinary message passing. Similarly,
in Self the messages defined by a part object cannot be accessed
by sending messages to the owning “whole” object, as they are
encapsulated. However, a parent designation in Self means that
messages defined by the part object will be shared with the whole
object. That is, the parent or sharing designation de-encapsulates
the messages, so that they will work as though they were part of
the whole object itself. (Overriding will be disregarded since it is
less relevant here.) Inheritance, as for example in Smalltalk, has a
similar de-encapsulating effect [37], firstly because a subclass can
directly read and write the variables defined by its superclasses,
and secondly because messages defined in superclasses also work
as though they were defined in the subclass (again ignoring
overriding). So the difference between regular variables and the
superclass in Smalltalk is the same as between regular slots and
parent slots in Self. From the point of view of object composition,
if we would distill the property that distinguishes
inheritance/delegation from regular part–whole composition
down to its purest form, the remaining element is de-
encapsulation. (For example, the principle of overriding is a
practical consequence of this principle.) Accordingly, in the
above diagrams the super slots are marked with an asterisk to
indicate de-encapsulation.

2.2.2. The similarity to Self
There are now striking similarities between figure 3c and how the
inheritance/delegation model of Self is usually represented [10,
40]. If the same organization would be used in Self (which is not
how it would be done in true Self style), the resulting diagram
would look like figure 3b. That is to say, the composition would
be exactly the same, beneath Self’s slightly different semantics

and terminology. This is no coincidence: Self radically
regularized the previously quite disparate mechanisms for object-
oriented composition when it unified parents with regular slots,
and also enabled any slot to be marked as a parent, not just the
super slot of Behavior objects, as in Smalltalk. For these reasons,
the Self language went further than any other language toward the
scheme that is presented in this paper.

In the interest of brevity and simplicity, delegation will be
subsumed under the general umbrella of inheritance in what
follows, as it concerns the same general type of composition [10,
38].

2.3. Aspect-oriented programming
as composition
Within aspect-oriented programming, the aspect concept itself has
undergone a gradual transition from the early days to the present
day. In the beginning, aspects and concerns (as in “separation of
concerns”) were not thought of in terms of composition or
structure, but rather as certain domains of functionality [28, 33].
Firstly, the prototypical examples of aspects were all related to a
certain functionality: synchronization, distribution, exception
handling, and so on. Secondly, the general approach was to
address each such domain with a separate, domain-specific aspect
language (ibid.). Thirdly, when the aspect concept was introduced,
it was defined in terms of functionality, as “units of system
decomposition that are not functional” [28]. Also, a crucial
distinction was made between the basic functionality of a
program, which could be decomposed by existing language
constructs, and “non-functional” concerns that had to be
addressed by aspectual decomposition. At that point, the AOP
field had not yet, as it were, separated the composition aspect of
software from the domain or content aspect.

There is further evidence of this gradual shift from the initial
domain-oriented accounts, over the just quoted mixture of
functional and compositional terminology, to a more purely
compositional view of aspects in recent times, as displayed e.g. in
[15]. For example, the earliest versions of AspectJ had domain-
specific sub-languages, whereas more recent versions have taken
a independent and content-agnostic approach. To follow these
developments to their logical conclusion, the position taken here
is that aspects are a purely compositional and content-agnostic
concept. Or in other words, aspect-oriented programming is all
about aspectual composition.

Figure 4 shows the composition graph for an example application
of AOP, which illustrates the essence of aspectual composition. In
this example, the basic functionality of two classes have had an

Rectangle

a Rectangle

Shape

Object

class

class

origin

 super *

class super *

class super *

corner parent * origin

parent *

parent *

parent *

corner

Object

Shape

Rectangle

a Rectangle

a Point a Point

…

…

*

*

*

Figure 3. Inheritance as composition II: (a) Smalltalk object layout. (b) Self-like version of 3a. (c) Composition diagram
for the same object. Each figure shows a partial view of the composition graph.

aspect for exception handling added to them. (To achieve clarity,
some less relevant details of the AOP style are not represented
with full accuracy in this example.) The graph shows how aspects
enter into an implementation on several levels: the exception-
handling aspect has subcomponents that are distributed across the
implementation, at the levels of both classes and methods
(methods not shown).

The distinguishing concept of aspectual composition is what is
known as tangling or crosscutting [28]: aspects crosscut or tangle
an application in that they are distributed across its composition in
such a manner that they cannot be properly separated with the
means provided by conventional languages. As figure 4 also
shows, crosscutting is directly captured by a composition graph:
the part–whole relationships of the aspect crosscut the
composition of the rest of the application. The crux of aspectual
composition is to allow such crosscutting structures to be defined
and dealt with in a convenient manner. Notably, this cannot be
handled by rules for hierarchical composition.

3. Achieving compositional completeness
Instead of trying to directly address the nature of aspectual
composition, we will now address the ability to define and work
with any composition that is theoretically possible. Thus we
return to the issue of achieving compositional completeness, and
this in turn will prove to reveal the precise nature of aspectual
composition. While the proof applies to the composition of any
system in the sense of systems theory, our concern is the
composition of software. The demonstration that follows will not
be presented as a formal proof but will instead emphasize
explanation.

3.1. The compositions
We have so far encountered three composition principles. The
simplest one is linear composition, which only allows simple
chains. Such compositions are defined by 1 → 1 rules. For
example, single inheritance chains are formed by individual
subclass/superclass declarations such as “Integer is a subclass of
Number”. The next principle in order of power is hierarchical
composition, which allows proper trees, and these compositions
are defined by 1 → N rules (one whole, several parts). This is
exemplified by instance variable definitions such as “Morph has
the instance variables bounds, position, and color”.

The third composition principle was aspectual composition,
which so far hasn’t been defined in more precise terms than as
being “crosscutting”. But instead of examining this concept more
closely and adding a new form of composition, and later possibly
another one and another one, the approach taken now is to address
the general problem, once and for all as it were. Fortunately this is
not as hard as it may appear. Everything required is covered by
relatively simple and well-known concepts of computer science.

3.1.1. Delineating the class of compositions
The first step toward a solution is to understand what such a
structure may be like, or in other words, to delineate the class of
structures that need to be handled. As noted earlier, compositions
informally correspond to box-and-arrow diagrams, and
hierarchical compositions correspond to the subset of these
diagrams that form proper trees. Moreover, we know that
composition diagrams always describe part–whole relationships.
For this reason, only cycle-free diagrams need to be handled. This
is because part–whole relations are directed, one-way relations,
which means that an entity cannot be part of itself, neither directly
nor indirectly. This is merely a matter of fact, since there is no
meaningful interpretation of something being a part of itself.
Moreover, it is not a crucial condition for the proof; however, it
greatly simplifies the explanation.

As it turns out, this information is all we need. Thus in informal
terms, the complete composition mechanism we seek will need to
handle all cycle-free box-and-arrow diagrams that can possibly be
constructed. In more formal terms, this corresponds to the class of
directed acyclic graphs (DAGs, cf. figure 4a). Formally, links are
one-way because the part–whole relation is asymmetric, and we
are thus dealing with directed graphs. Similarly, we are dealing
with acyclic graphs because of the restriction to cycle-free
relations. Hence, in formal terms, a compositionally complete
scheme must be able to compose any directed acyclic graph,
where the graph represents part–whole relationships between the
composed entities.

3.1.2. Covering the class of compositions
The second step is to identify the format of the rules needed to
describe such structures. As previously noted, the theory of
syntactic structures states that tree structures can be described by
context-free grammars [30]. The same theory also says that
attribute grammars are required for describing DAGs, and to
some extent this defines the rules that are needed. However, this is
not a purely theoretical exercise, but should result in a practical
technique for design and implementation. Thus, the rules should
be expressed in a maximally useful and sensible format. To reach
that point the nature of these DAG structures needs to be clarified.

 The approach taken here is to regard DAGs as a generalization of
hierarchical structures; this is simply the complement of the fact
that trees make up a subset of DAGs. Hierarchical decomposition
in programming languages is already well-established, it is the
foundation of structured programming as we know it, and trees
are widely recognized to be rather easy to understand and reason
about, as well as practical to deal with. But there is also a special
reason for treating DAGs as an extension of tree structures. Very
often the additional power of composition afforded by DAGs is
not needed, but composition into trees will be sufficient. In these
cases the extension will be transparent, and the new scheme will
be equivalent to hierarchical composition. And when the

Basic
Functionality

Class 1

Application

Exception
Handling 1

Exception
Handling 2

Class 2

Basic
Functionality

Exception
HandlingClass 0 Class 3

Figure 4. The composition graph for a simple case of aspectual composition. Note how the composition of the ExceptionHandling
aspect literally cross-cuts the composition of the basic classes.

additional power is needed, it will appear as an extension to
hierarchical composition, not as an entirely new and different
composition scheme. So this means that the new scheme becomes
a strict extension of hierarchical composition, which doesn’t
complicate the composition of more simple structures.

3.1.3. Making all compositions treelike
The operation that turns DAGs into treelike structures follows
from the fact that these structures are acyclic. This means that
DAGs like trees can be drawn so that a parent node always
appears above its children (or wholes above their parts).
Formally, this corresponds to performing a topological sort on the
nodes of the graph [1]. (The topological sort operation is what
requires the graphs to be directed and acyclic; relaxing these
constraints would complicate the principles and make them harder
to use, but wouldn’t invalidate them.)

The topological sort transform the normally disorderly-looking
DAGs into quite a treelike format. The formal remaining
difference between DAG.s and trees lies in that a tree node may
have any number of outgoing arrows but only one incoming
arrow, whereas the nodes of a DAG lack the last restriction, they
may have any number of incoming arrows as well. That is,
whereas a tree node always has only one parent, a DAG node may
have multiple parents.

In a topologically sorted DAG diagram (cf. figure 4b) these
multiple parent links can be seen as though they were additional
crosscutting links added to a regular tree. Thus, the formal
difference between DAGs and trees can be fruitfully characterized
as parent nodes being able to “cross-reference” or “hyperlink to”
their children. This also shows that the most convenient form of
attribute grammars for this domain is referential attribute
grammars [20]: Trees are described by context-free Whole →
Part rules, and to describe DAGs the only kind of “attribute” we
need to add to these rules is cross-references to other nodes in the
composition tree. In practice, these are not treated as “attributes”
but as any other part of a composition.

This additional ability of DAGs to cross-reference nodes is just
what is needed—and it is all that is needed—for aspectual

composition. In the previous example, ordinary Whole → Parts
rules were sufficient for describing the composition of the main
program, as well as the aspect as such, but to bind the aspects to
their proper locations we need the ability to make cross-references
between elements. Moreover, this amounts to the exact and entire
difference between hierarchical composition and the ability to
compose anything that is theoretically possible. That is, as
described here, aspectual composition amounts to this exact
difference.

3.2. Perspectives
The last step toward practicality is to avoid the overlaps in a
topologically sorted DAG by decomposing it into subtrees (figure
5). This operation derives from the fact that any given 1 → N
relation does not contain any overlap, and that an N → 1 relation
(i.e. several parents referencing the same child) can be divided
into N simple 1 → 1 relations. By applying this principle
recursively, any topologically sorted DAG can be untangled into a
number of simple subtrees. This technique may be considered as
taking different perspectives on the overall composition DAG:
when a child node is cross-referenced by several parents, it may
be regarded as being part of more than one perspective, each
corresponding to one parent.

Since perspectives make up the crucial technique for untangling
complex compositions, they deserve to be given a special status
within the language and tools. Here, a simple diagrammatic
convention can be used to represent them, or more precisely, to
hide them, as illustrated in figure 6a. Instead of drawing the full
structure of the perspective into the diagram, one edge of its
parent is emphasized to represent the perspective. The heavier
edge can be thought of as a stylized image of a dimension that
isn’t fully visible from the current point of view (figure 6b).

While perspectives resemble aspects, they are much older as an
object-oriented technique [6, 9, 18]. From their origin in
knowledge representation, they are also more powerful and
general in their application than aspects, for example in their
potential to replace inheritance [9, 18, 24]. Here we may give
perspectives a precise definition in terms of compositional

Figure 4. A directed acyclic graph (a), and (b) the same graph toplologically sorted to place all parents above their children.

Figure 5. Untangling a crosscutting DAG into regular trees. On a conceptual level, each tree corresponds to a perspective.

completeness: A perspective corresponds to a subtree of the
composition graph of an object. Since the subtree spans exactly
those part nodes that are reachable from the root node, any
perspective is uniquely defined by the root part. Strictly, in this
definition every part becomes a perspective, and since parts obey
encapsulation, each one sees only its own subparts, i.e. “its own
point of view” of the whole composition. However, there is an
added capability-like facility that corresponds to “taking a
perspective on” an object from the outside. Thus if another object
has a reference to this perspective, then any access to the object
via this reference will be restricted to the protocol understood by
this perspective, rather than to the protocol of the whole object.
The protocol of the perspective consists of the methods defined in
the root part (or its de-encapsulated subparts). A simple
implementation of this facility is to associate a perspective with
its own, separate selector name space.

4. Applying the scheme in practice
Section 2 illustrated how inheritance and aspect-oriented
programming can be reformulated as special cases of generalized
composition. The rest of the paper will present the scheme in its
own terms, using its own preferred style for performing program
composition, rather than to emulate other schemes such as aspects
or inheritance.

4.1. The nature of the composed parts
So far, little has been said about the units of composition, the
parts (or informally the boxes of the diagram), and their contents.
On a theoretical level, it is necessary and sufficient that a part
may contain other parts plus the basic units of content. These
basic units are the primitives of state and behavior that cannot be
decomposed into more elementary units. The power of the
composition scheme allows the composed units to be reduced to
their simplest possible form, since they still can be composed to
any level of complexity.

For a practical programming language construct, the
corresponding solution is slightly different. The primitive unit of
state is a word of memory; in practice this translates to an
instance variable holding an object reference, as is normally the
case. However, the basic unit of behavior will not be primitive
instructions but methods. This is because methods, the provisions
that languages already have for composing behavior, are
sufficient as they are. In the interest of simplicity they are
therefore not replaced. So, in practice a part may hold objects,
methods, and other subparts, or rather references to them.
Extending Self’s concept, we may collectively refer to
these—holders of not just state and behavior as in Self, but of all
three kinds—as slots.

Parts, the basic units of composition, therefore become highly
similar to ordinary objects. A part has the same semantics as an
object, and composing an object out of parts follows the usual

principles for composing objects out of other objects, but for one
provision: just as an object need not contain a copy of each of the
methods it responds to, an object also doesn’t have to contain a
copy of each of its parts. Hence, parts belong to an object’s
abstract composition, but need not be explicitly stored within the
object they compose.

4.1.1. The advantages of encapsulating parts
Since parts can contain state but also observe encapsulation, this
allows state to be encapsulated by the functional parts to which
the state properly belongs. This is not typically possible using
inheritance and is not allowed by e.g. Self or Smalltalk. However,
here it is not merely possible—it is even the preferred style of use.

This lack may be perceived as an insignificant drawback in
current languages. If so, however, this is probably because their
inheritance mechanisms place a rather low limit on the number of
units (superclasses) an object can be composed from. Thus not
being able to keep the state of these parts separated will usually
present few problems. Still, whenever the “fragile base class”
issue does become a significant problem (i.e. when sub- and
superclasses have conflicting instance variable names). The
fragile base class problem is resolved by the encapsulated parts of
the present scheme. Also cf. [37].

However, more importantly, when properly applied the present
scheme leads to a much higher degree of complexity in the object
compositions. In its most complex application so far, the average
objects were composed out of around 30+ subparts; the extreme
case was an object with 70+ subparts (while still having no more
than three or so instance variables). Moreover, some subparts
would occur multiple times within the same object, and in some
cases they would even recursively contain a different instance of
the same kind. The object with 70+ subparts was in fact composed
out of two of the 30+ compositions, plus the necessary connecting
elements.

Lastly, the use of multiple, potentially conflicting perspectives
within one object also vitally depends on the ability to keep the
internals of different perspectives from conflicting with each
other. For these reasons, the ability to encapsulate a part’s
contents—i.e. state, behavior and subparts—becomes crucial and
indispensable once one starts to exploit the abilities of this scheme
to create more elaborate compositions.

4.2. Functional decomposition, a.k.a. role-
based design
A scheme that is compositionally complete brings the full
freedom to structure a system in any possible way. Moreover, the
scheme itself is neutral with respect to what it composes, and
therefore any semantical interpretation could be applied to the
composed parts. This leads to the following question: When you
can choose any principle whatsoever for decomposition, what

Figure 6. (a) Hiding a perspective (compare to figure 5). (b) the black edge is a stylized representation of a hidden dimension.

principle do you choose? (Inheritance, for example, uses is-a-
kind-of relations.)

On a theoretical level the approach propose here is
instrumentalism. Its guiding principle is the analysis of
phenomena in terms of their function, purpose, or effect.
According to this position, the proof is in the eating of the
pudding, as opposed to in the pudding itself. Articulated by John
Dewey in the early 20th century [12, 13], instrumentalism is still
the state of the art for theories of knowledge, and as far as its
ability to scale is concerned, it has provided the basis for e.g.
modern physics (including quantum mechanics and other
nontrivial domains) for almost a century; this ought to provided
some reassurance in this regard.

Thus, the principle proposed here is to decompose problems in
terms of function or purpose, and to let each unit of composition,
each part, represent one such function. As it happens, this turns
out not to be an entirely novel idea. Such a functional part
corresponds to a role in role-based design [2, 41] and a
responsibility in CRC terminology [5]. These role-based
approaches seem to have reinvented instrumentalism on a
practical level, for use as a design and analysis technique. From
this point of view, a part might be regarded as a simplest language
construct for representing roles or responsibilities. This has
otherwise been a difficulty in turning role-based designs into
object-oriented implementations [3, 19, 26, 41].

Thus, the present scheme is fortunate to draw on how role-based
analysis has established itself as a reliable, practically proven
approach through years of OO practice. The analysis of
Model–View–Controller in [5] can illustrate how role-based
analysis translates into the current scheme. This example states
the View object in MVC as having the responsibilities Render the
model and Transform coordinates, and the Model object as
having the responsibilities Maintain probem-related info and
Broadcast change notification. Here, each of the responsibilities
would correspond to one functional part, and to give an object the
ability to broadcast change, one would add this functional part to
the object. In informal terms, this corresponds to “giving” it this
ability or functionality, which is the essence of what being a
Model is about. Currently you instead inherit this functionality via
Object, which with multiple inheritance would be from Model.
Recognizing that an object has this functional part, rather than it
being a subclass of Model, arguably provides a clearer and
conceptually more direct explanation of what the object does.
This clarity follows from basing the analysis on what an object
does rather than what it is; in other words, the instrumental point
of view.

4.3. An example application
The next example comes from using this scheme to solve a
research problem within Ubiquitous Computing [16]. It was the
third application domain that this scheme has been applied to. It
will here serve to illustrate two points: Firstly, how this scheme
may obtain a much better separation of concerns than inheritance,
and secondly, how the scheme is used for aspect-like
compositions. The research problem is based on allowing
physical computing devices and virtual, digital objects in
ubiquitous computing environments to interoperate in various
configurations, in a manner that is smooth and transparent to the
user, and without requiring any configuration effort to make the
interoperations work. The technique involved allows a user to
specify (or “combine”) various physical or virtual objects using a
magic wand-like combination device [21]. The wand is currently
implemented as a handheld computer that uses infrared signals for

object selection and wireless networking for inter-device
communication. Similarly the devices involved have infrared
receivers to pick up the selection signal. In a representative
scenario, the user would for example select a document on a tablet
computer and then select a wall-based display, by pointing at each
of them in turn.

The task of the combination algorithm is to identify the possible
meaningful actions that could result from combining the selected
objects, to allow these actions to be presented as options on the
wand’s display. The user may then carry out an operation by
simply selecting it. The prototypical operation to result from the
above combination would be to show the document on the wall
display. Some advantages with this technique, besides
transparency of use, are that a user can come into an environment
and immediately start using the available technology without
knowing the device addresses, or knowing the available
functionalities, or even the commands required to use a certain
functionality.

The wall display and the document are given as arguments to the
combination algorithm. The arguments are provided as objects,
having been retrieved in a prior stage. If these domain objects are
modeled using inheritance, the usual problems of inheritance
present themselves, if perhaps to an unusually high degree: It is
hard to isolate interactions and combinations, so a great deal of
code duplication is necessary, and hand-coding of individual
combinations is required to handle each case correctly. As a
result, the combination algorithm is distributed across every class
in the domain model, with a great deal of redundancy and brittle
cross-dependencies. If there is such a thing as “code smell”, then
in this case there is something truly rotten in the state of Denmark,
due to the limitations of inheritance. These problems are more
fully described in [16].

When the present composition scheme is used instead of
inheritance, the various objects are decomposed into their
functional parts. Here, the relevant functions are that the
document is visually Renderable, and the wall display is a
Renderer, capable of displaying anything that is renderable. To
render the document on the display, the Renderable and Renderer
parts in the respective objects enter into a classical collaboration
pattern. The use of functional composition in itself guarantees that
combinable properties now may always be represented once and
only once, instead of having to distribute the combination code
across all the various entities that could participate in a rendering
operation. (From the above principles it even follows that “once
and only once”, i.e. redundancy-free composition, can be attained
for any composition problem. This point is however beyond the
scope of theis paper.)

It bears noting that the solution architecture so far is not
specifically tailored to serve combination finding, but uses the
conventional approach (functional decomposition), which thus
proves highly suitable for implementing device capabilities in a
useful way. In contrast, inheritance would say that a Document is
a kind of VirtualObject, a PDA a kind of Computer, and so forth,
but this wouldn’t provide much help for either the problem of
representing device capabilities, or to finding combinations.
However, because the analysis in terms of function is not
restricted to one point of view, but can handle multiple
functionalities in parallel, the combination functionality can now
be added in a manner that meets two important conditions: it is
noninvasive and it suits the problem of finding combinations. The
resulting solution is based on adding combination functionality as
a separable perspective (roughly corresponding to and aspect)

The basic device functionality is provided as ordinary methods;
The Renderable part contains methods for rendering the
document, and the Renderer part has methods and state that
implement the rendering of renderable entities on its surface. In
actual fact both of these functional parts would themselves have
rather elaborately decomposed implementations.

The additional information needed should annotate the specific
operations that would be made available; for Renderer the
message render: aRenderable would be indicated along with a
description of the operation, “Display <the renderable> on <the
renderer>”, which would be used to present the operation in a
menu. To avoid adding this information to the Renderable part
itself, it is instead provided non-invasively by adding a
Combinable part to the Renderable part, and to any other parts
that should be involved in the combination algorithm. The
Combinable parts all belong to the Combination perspective, and
this is where they are specified for combinable objects, by cross-
reference to these basic objects.

The composition of a Document object would now look similar to
figure 7. Here there are some special compositional features
worth noting. Firstly, the basic functional parts are de-
encapsulated, since the wall display object itself should “acquire”
the basic functionalities, that is be able to respond to for example
the render: message. However, the contents of the Combinable
parts in turn are encapsulated, and so a Document does acquire
the abilities of being Renderable and being Authored, but not
those of being Combinable. Secondly, the diagram convention of
leaving out this perspective is shown in AC3; this corresponds to
browsing the system from a different point of view.

Renderable *

Document

Authored *

Combinable Combinable

Combination

Renderable *

Document

Authored *

Figure 7. (a) A Document with Renderable and Authored
parts, each having a part belonging to the Combinable
perspective. (b) The perspective left out of the composition
graph.

The inheritance version of the combination algorithm would have
handwritten code in the classes of every potential combinee,
where these would send messages to each other to negotiate
whether they make a valid combination, and if so, what operations
would apply. Here, a valid combination can be specified simply
by indicating for each Combinable what its corresponding
combinee is; one indicates simply that a Renderer part can be
combined with any Renderable, and so on. This information is
provided in a noninvasive manner in the various Combinable parts
(figure 7).

This version of the search algorithm exploits the fact that
functional parts are first-class objects, and therefore uses
reflection to traverse the composition graphs of the two potential
combinee objects, to single out those basic functional parts that
have Combinable subparts (cf. figure 8) added to them. The
eligible Combinable parts in the two objects are then exhaustively
searched for matching pairs. In this case, Renderer in the
WallDisplay object specifies Renderable as its partner, and such a
matching part is also found in the Document object (figure 8).

In this manner the information can be provided in a structured
fashion that suits the problem, and so the combination search
becomes drastically more simple, and it does not require any
combination code to infiltrate the basic implementation. Instead
the search algorithm can be specified in pure form, once and only
once and in its own functional part; the domain objects need only
contain annotation information that the search algorithm can use.

4.4. Composing behavior
Since behavior has a more complex structure than static content,
the composition of behavior requires special attention. Aspect
weaving is a central concept in aspect-oriented programming [28].
It is the problem of integrating aspect and non-aspect behavior by
taking the appropriate code from the aspects involved, and
integrating it with the regular code of the program, “weaving”
these pieces into a single piece of executable code. In the more
general-purpose scheme presented here, aspect weaving
corresponds to the general problem or composing methods out of
separate pieces of code, as provided by multiple parts.

The parts of a method, the messages etc., are ordered, they may be
nested into blocks, and so on. For this reason, some mechanism
must allow this additional information to be provided when
different pieces of behavior should be assembled into new,
composed behavior. The simplest solution is to simply write a
method that invokes the parts’ methods in the desired order:

printOn: aStream

a printOn: aStream.
b printOn: aStream.
c printOn: aStream.

Figure 8. Schematic of the combination search: All Combinable parts in each combinee are matched against those in the other.
Here the Renderer–Renderable combination forms a matching pair.

Renderable

…

…

Document …

Renderer

Printer

However, often the same pattern would be repeated for many or
all methods, so a way of specifying a general pattern for all
methods is convenient. A common approach both in multiple
inheritance and aspect-oriented programming is to use directives
such as before, after and around [27, 29]. However, such
directives provides an unnecessarily restricted range of options.
Instead, one may turn the above concrete method into a general
composition method that has been generalized to work for any
message. Thus to invoke the implementations in part a, b and c
you would use the following composition method:

methodFor: aMessage

aMessage sentTo: a.
aMessage sentTo: b.
aMessage sentTo: c.

A part that writes tracing statements and then passes on the
message to otherPart could thus be written in the following way:

methodFor: aMessage

Transcript show: 'Entering ...’.
aMessage sentTo: otherPart.
Transcript show: '... leaving’; cr.

This technique allows the full range of the language to be used,
including more advanced forms of message composition using
e.g. blocks. For example, the basic functionality of one part could
be wrapped in exception-handling code provided by another part,
using block closures to compose the respective parts:

methodFor: aMessage

[aMessage sentTo: computationPart]
onExceptionDo:

[aMessage sentTo: exceptionHandlerPart]

This composition method sends the message to computationPart,
wrapping it in a hypothetical error-handling message
onExceptionDo:, and if an exception occurs it will send the same
message to the exceptionHandlerPart. In this way an
implementation of divideBy: could be separated into the
respective parts:

Computation>>divideBy: aNumber

^self primitiveDivideBy: aNumber

and

ExceptionHandling>>divideBy: aNumber

^self primitiveDivideByZeroError

4.5. Static composition using
program specialization
could send explicit messages
In this way, ordinary message passing works perfectly well for
composing code from different parts into new whole methods.
The only provision is that this technique may be rather slow,
especially since the proper use of the present decomposition
scheme leads to much higher levels of decomposition, which then
requires more messages for gluing the individual pieces of code
together. The result would be poorer performance than with
existing composition schemes. However, by using program
specialization, also known as partial evaluation, [23] this can be
turned into highly efficient runtime behavior. Program
specialization is a program transformation technique that can be

regarded as the most general form of code optimization,
subsuming several techniques of more limited scope, such as
inlining and constant folding. You specialize a program by
providing values for some of its input parameters. Program
specialization then identifies those of the program’s operations
that can be computed ahead of runtime because all their input data
is known at the time of specialization. It then outputs a specialized
version of the program where it has replaced all those operations
with their results. A trivial application would be to transform the
expression 3 * 2 + a to 6 + a. Similarly, if the expression 3 * b +
a is specialized for b = 2, the result will be identical.

The code that results is highly efficient by any measure. The
effect is that the runtime expense of a computation becomes no
higher than it absolutely needs to be. This principle may be
expressed as “when the cost is zero, the price is nothing”: if e.g.
the result of a certain composition can be computed once and for
all, then it shouldn’t be computed every time it is invoked.
inlining
The specialization technique of inlining messages is particularly
relevant here. Where runtime message passing composes behavior
dynamically, inlining will do the same thing statically. It does not
merely early-bind the message receiver, but in effect eliminates
the entire message, “pasting” the code of the receiving method
into the sending method, while performing parameter substitution
and whatever else is necessary to produce an equivalent program.
The effect is that the message that links the pieces of calling and
called code will vanish, merging both pieces of code into one. If
for example the earlier composition method

methodFor: aMessage

[aMessage sentTo: computationPart]
onExceptionDo:

[aMessage sentTo: exceptionHandlerPart]

is specialized for a message with the selector divideBy: the result
would be as follows:

divideBy: aNumber

[self primitiveDivideBy: aNumber]
onExceptionDo:

[self primitiveDivideByZeroError]

Here, the messages that invoke the two divideBy: methods above
have been completely removed, and only the cores of those
methods remain, one inside each block.

4.6. A second example: BitBlt
intro BitBlt
The following example will illustrate just how efficient the
resulting code can be when it has been translated from a high-
level design in terms of functional parts, using program
specialization, and inlining in particular. BitBlt is the original Bit
BLock Transfer operation of Smalltalk-80, used to transfer bitmap
graphics e.g. to the high-resolution display [17]. As pixels may be
smaller than memory words, this involves not merely simple
memory moving operations, but potentially also shifting the bits
to handle sub-word positioning. And with the advent of color
graphics, the operation has been extended to handle the various
formats that pixels may come in, e.g. 2, 4, or 8 bit color map
indices, or direct RGB values with alpha channels in 16 or 32 bits
per pixel. In its general formulation, the operation also includes a
transfer function, in which case it computes the function from the
source and destination pixels, and overwrites the destination with
the resulting value.

Slang BitBlt
To achieve self-simulation capability and platform independence,
the Squeak system implements BitBlt in a subset of Smalltalk
[22]. This code can either be run as is, which is highly useful
during development but far too slow for real-time graphics, or it
can be translated into C, from which highly efficient machine
code may be generated. The need for speed naturally places tight
constraints on the implementation. This applies in particular to the
most speed-sensitive inner loop that performs the actual pixel
transfer. In contrast to normal Smalltalk code, which typically
comes as a number of small, well-factored high-level methods for
maximum clarity, the inner loop is hand-optimized to maximize
its speed and therefore looks much the opposite.
performance implementation-bound -> give up structuring
This BitBlt inner loop is a large monolithic method, over a
hundred lines long, and with several highly similar chunks of
code repeated with subtle variations. It could in other words
easily be refactored, to yield a much better organized but also
slower version. Moreover, several variants of this inner loop are
provided, which exploit various special conditions to make some
important cases as fast as possible. A mere glance shows that
there are great similarities also between these variants. They
differ merely in the optimizations, which have typically been
applied by hand; any non-optimization differences could only be
counted as oversights. In all, it is evident how the concessions
that have been made to achieve maximum performance come at
the expense of most everything we consider good programming
practice, and this trade-off would not turn out more favorably if
coding directly in C, or even assembly language. It has often been
said that object-oriented design is not suitable for certain
applications, since it prevents an reasonable implementation, for
example because it limits performance. BitBlt may be the ultimate
illustration of this point.

4.6.1. A functionally decomposed BitBlt
structuring IL with UC
It seems appropriate to have the architecture follow the high-level
description of the BitBlt operation, as a general pixel-by-pixel
transformation that takes the source and destination pixel maps as
its inputs, and the destination as output. From this, the source and
destination may be defined as PixelMaps (figure 9a). As a result,
many aspects of the algorithm can be expressed as properties of
the pixels: this includes the pixel sizes in bits, and whether they
are indexed or direct colors, a possible RGB(A) format of the
color, and so on.

Also, much of the low-level processing can be encapsulated as
higher-level operations on the pixel maps, thereby hiding dozens
of parameters like the respective width and height of the pixel
maps, and much internal state that is kept track of during the
operation, like positions of the current pixel in each map. This is
an example of how functional parts can be effectively used to
encapsulate state.

A PixelTransform can be used to organize the remaining aspects
of the computation: besides the transfer function, various
auxiliary operations like pixel alignment, halftoning, and others
(figure 9b). To handle pixel alignment, bit rotation and masking
can be encapsulated in a Skew part.

Pixel
Source

BitBlt
Operation

Pixel
Transform

PixelMap

Pixel
Destination

PixelMap

Pixel
Transform

Skew Halftone Transfer
Function

Figure 9. Schematic of the composition of BitBlt. (a) The
overall operation is a transformation that applies a transfer
function to a source and a destination pixel map. (b) The
transfer computation involves additional steps to the transfer
function itself.

This description of the BitBlt composition has intentionally been
kept brief and undetailed, so as not to distract from the main point
of this example, which is that a highly structured implementation
need not incur any performance loss. However, the description
ought to have shown that the resulting composition closely
matches a high-level explanation of how the operation works.

4.6.2. The resulting code
By using this design, the resulting source code for the general
(non-inlined) inner loop is straightforward to understand and like
regular Smalltalk approaches the level of pseudo-code. It looks
roughly like this:

copyLoop

self setupVerticalLoop.
1 to: sourceMap height do: [:line |

self prepareLine: line.
self resultPixel: self transformedPixel

 edge: skew leftEdge.
self nWords > 1 ifTrue: [

self copyHorizontalLine.
self resultPixel: self transformedPixel

edge: skew rightEdge].
self nextLine]

In this version, the pixel transformation is expressed directly in its
general, most high-level form:

transformedPixel

^transferFunction
source: source pixelValue
destination: destination pixelValue

Spelled out, this means “return the result of applying the transfer
function to the source and destination pixels”. In Squeak’s hand-
written version the code for the same operation looks as follows:

…
thisWord _ self srcLongAt: sourceIndex. "pick up next
word"
sourceIndex _ sourceIndex + hInc.
skewWord _

((prevWord bitAnd: notSkewMask) bitShift: unskew)
bitOr: "32-bit rotate"

((thisWord bitAnd: skewMask) bitShift: skew).
prevWord _ thisWord.
mergeWord _

self mergeFn: (skewWord bitAnd: halftoneWord)
with: (self dstLongAt: destIndex).

self dstLongAt: destIndex put: mergeWord. “write result”
destIndex _ destIndex + hInc
…

The code that results from applying specialization to the high-
level version is identical to the code shown here, except that
intermediate variables are used only when necessary. A first
version was written to mimic the hand-written code exactly, but
the later version captures the intention behind the code much
more directly, by specifying what should be computed without
saying how to do it (i.e. whether to use intermediate assignments).
It relies on the ability of the specialization engine to insert local
variables when necessary, i.e. when the result of a computation is
used more than once.
hand optimizations automatically
And instead of writing alternative versions by hand to optimize
them for certain conditions, different variants can be generated by
altering the parameters given to the specializer. Then, whenever
possible, optimizations are applied automatically during
specialization. For example, one of the most important special
cases is when no source bitmap is used (e.g. when simply filling
the destination with a solid color). To obtain a version of the inner
loop that is optimized for this case, you merely specify a no-op-
style part as the SourceMap, which generates empty operations
for every source-related part of the code. The resulting inner loop
is instruction-by-instruction equivalent to the hand-optimized
version of the same method.

4.6.3. Optimal performance
Table 1 compares the speed of hand-written and re-engineered
versions of the BitBlt inner loop, where these have been
translated into C. A deeper investigation traced the discrepancies
to the used C compiler’s varying ability to optimize code that
performs the same computation but with or without explicitly
assigning intermediate values to local variables.

Table 1. A comparison of benchmark execution times in ms
(smaller is better) of hand-optimized and mechanically
specialized high-level versions of BitBlt. Paint and over are
two common BitBlt transfer functions.

108%35032332
108%84788
110%11101over
100%61160832

94%1791908

98%62631paint

ratio
re-

engineered
hand-

optimizeddepth

As the comparison shows, the performance cost of reshaping

BitBlt as a high-level composition is practically none, even
compared to a hand-optimized version of this highly speed-
sensitive algorithm. And whereas the hand-written code trades a
great deal of clarity and conciseness for optimal performance, the
re-engineered version has been given a high-level architecture that
lies very close to the most convenient conceptual description of
the operation. As seen in figure 9b, the functional part responsible
for the PixelTransform is itself decomposed into successive
functional steps in a data-flow pattern. This means that this
version could be extended in a well-structured manner by adding
additional parts to the PixelTransform, where each new part
would add one new ability, for example to perform byte-order
conversion or to exploit special hardware.

5. Related Work
5.1. Software composition
There is already a vast literature on software composition [4, 11],
where the approaches have had varying degrees of success; it
would no doubt seem rash to claim to address such a formidable
problem in the general case. In a nearby case, the problem of
compositional semantics arose in relation to subject-oriented
composition rules [34]. The reason why this scheme works
whereas others do not could be that it carefully separates the
concern of compositional “syntax” from the concern of
compositional semantics. It separates the concern of composing
software elements from the concern of the contents of these
elements, by taking care to ensure that the contents will not be
affected by the composition that is performed.

This separation can be illuminated by how program specialization
works, because it too carefully avoids the issue of program
semantics, by taking care not to perform any transformation that
may change the semantics of the program. It will for example
transform 3 + 2 into 5 because the semantics of this computation
will not be affected by whether it is performed at runtime or ahead
of runtime. Thereby the semantic correctness of a transformed
program is left unaffected, and will only depend on the
correctness of what the programmer has written. In fact, program
specialization has been used in the present scheme precisely
because it has this property: It can therefore be used to compose
behavior without affecting the semantics of the composed
elements.

That is, the present approach has not solved the problem of
compositional semantics. On the contrary, by recognizing that
composition is a purely structural concept, this scheme can
address that specific problem in the general case, by taking care to
circumvent the problem of compositional semantics.

5.2. Inheritance
Various problems related to method lookup in multiple
inheritance (MI) have been well documented [9, 14, 37]. The way
in which the present scheme resolves these problems is highly
similar to the one described in [9]. However, since that approach
is based on inheritance, the definition of a point of view becomes
complex and non-intuitive. Here there is no need for introducing a
special construct for this purpose, instead functional parts (and
perspectives) already handle this problem. In fact, if the examples
from [9] are recast as composition graphs, the results resemble
perspectives very closely, with the infamous “multiple inheritance
diamond” corresponding to multiple perspectives cross-
referencing the same part or parts.

The ability to form general DAGs is neither unique nor new; MI
has always had this ability. The critical difference indeed appears

to be that inheritance always enforces de-encapsulation, cf. above
and [37]. The present scheme fully exploits this fact by eschewing
inheritance for composition. It builds new entities out of
functional parts with precisely carved abilities, instead of deriving
new entities from other complete entities, in an all-or-nothing
fashion (i.e. deriving new classes from other fully capable
classes). This difference, composition from small, precise parts
instead of derivation from large, fully capable entities indeed
seems to be the crucial factor that makes a great difference.

In this, there is a distinct similarity between functional parts and
mixins [8]. However, in comparison to the gradual and rather ad
hoc evolution (and divergence) of inheritance into MI, mixins,
points of view, and so forth, it should be clear that the present
composition scheme results from a clean-sheet design and so rests
on a conceptually simple and clear foundation. On this point, the
present scheme stands in contrast to Self, which held on the
notion of inheritance, resulting in an odd mix of concepts from
inheritance and composition, as in “parents are shared parts of
objects”, “traits objects”, and so on [10].

5.3. Aspect-oriented programming
Relation to “aspect weaving”
Aspect weaving corresponds to a special form of behavior
composition, as discussed above. Aspect weaving is usually
considered to be performed ahead of runtime, even though
nothing prevents it from being performed dynamically, at
runtime; the use of program specialization for this purpose was
discussed above. And even though it addresses a less general
problem, the resulting solution introduces more additional
complexity into the base language than has been done here. The
simplicity obtained here is due to the general but conceptually
simple design of the composition mechanism, which draws on the
existing mechanism for composing behavior, namely message
passing, and this is all the machinery needed for the general case.

Composition methods were introduced as a means for allowing
the same composition pattern to be used for several methods in
the same part. In contrast, AspectJ introduces three types of
construct, join points, pointcut designators, and advice
declarations [27]. Each of the latter categories have multiple
members, which in relation to existing language constructs range
from the familiar to the quite unfamiliar. Thus, the concepts
introduced by the present scheme are far fewer and less foreign to
the base language than those introduced by AspectJ. The main
reason for these differences is that AspectJ is specifically tailored
for one new category of software composition, namely aspectual
composition. Such a specialized scheme would not work here, as
the present scheme needs to work for program composition in
general.

Like multiple inheritance, also AOP schemes have the theoretical
capacity to describe general DAGs. For example, hyperspaces
[39] provide this capability. However, beside the fact that HyperJ
much like AspectJ introduces a substantial amount of new
language machinery, it also requires the full composition graphs
to be specified from top to bottom, as it were, using absolute
references. To obtain good encapsulation, it is essential that the
composition scheme allows cross-references to be both
encapsulated and relative. For example, the compositions of 30+
and even 70+ parts mentioned above were all generated from one
single top-level rule each, with the equivalent of five parameters
whose values cascade into other parameterized rules, to a total of
thirty or seventy nodes. Thus, relative and encapsulated
composition rules are essential to allow the compositions to scale
in a controlled manner.

6. Conclusions
This paper has sought to show that the aim of achieving
compositional completeness, i.e. the ability to decompose any
given system in any manner that is theoretically possible, is not as
hard to reach as intuition would suggest: Any composition can be
described by a directed acyclic graph, and any such graph can be
fully untangled by decomposing it into multiple “perspectives”,
each of which is an ordinary non-tangled tree. In this manner, any
system can be described in a structured and manageable way.

This work was originally inspired by the sheer multiplicity of
approaches to inheritance and aspect-oriented programming, and a
feeling that they all had some shared core. Compositional
completeness is that core. A scheme that has this property is also
the superset of all other software composition schemes, for
example any variants of inheritance and aspect-oriented
programming. Therefore a language based on this core would be
smaller, yet substantially more expressive and powerful than
current languages.

Moreover, this paper has tried to show by example that the
practical application of this scheme leads to designs and
implementations that are both problem-oriented and highly
structured. The scheme brings the freedom to structure a system in
any possible way, and I have proposed that this freedom is best
utilized by decomposing problems in terms of function or
purpose, in a manner that corresponds to role-based design. The
concluding BitBlt example showed that this approach can be
applied even to highly performance-critical applications, and then
without incurring any efficiency loss, even when compared to
hand-crafted, optimized C code. My intention has been to show
that this scheme is not merely a theoretical construct, but that it
also works well when put into practice.

7. REFERENCES
[1] Aho, A.V., J.E. Hopcroft, and J.D. Ullman, The design and

analysis of computer algorithms. 1974, Reading, MA:
Addison-Wesley.

[2] Andersen, E.P. and T. Reenskaug. System Design by
Composing Structures of Interacting Objects. in European
Conference on Object-Oriented Programming (ECOOP’92).
1992.

[3] Bækdal, K.K. and B.B. Kristensen. Perspectives and
complex aggregates. in Proceedings of OOIS 2000. 2000.

[4] Batory, D. and B.J. Geraci, Composition Validation and
Subjectivity in GenVoca Generators. ACM Transactions on
Software Engineering, 1997. 23(2): p. 67-82.

[5] Beck, K. and W. Cunningham. A Laboratory For Teaching
Object-Oriented Thinking. in Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA’89). 1989.

[6] Bobrow, D.G. and T. Winograd, An overview of KRL, a
knowledge representation language. Cognitive Science,
1977. 1(1): p. 3-46.

[7] Böhm, C. and G. Jacopini, Flow diagrams, Turing machines
and languages with only two formation rules.
Communications of the ACM, 1966. 9(May): p. 366-371.

[8] Bracha, G. and W. Cooke. Mixin-based inheritance. in
Proceedings of the 1990 ACM Conference on Object-
Oriented Programming Systems, Languages and
Applications. 1990.

[9] Carré, B. and J.-M. Geib. The Point of View notion for

multipe inheritance. in Proceedings of
ECOOP/OOPSLA’90. 1990.

[10] Chambers, C., D. Ungar, B.-W. Chang, and U. Hölzle,
Parents are shared parts of objects: inheritance and
encapsulation in Self. Lisp and Symbolic Computation,
1991. 4(3): p. 207-222.

[11] Czarnecki, K., Aspect-Oriented Decomposition and
Composition, in Generative Programming: Methods,
Techniques, and Applications, K. Czarnecki and U.
Eisenecker, Editors. 1999, Addison-Wesley: Reading, MA.

[12] Dewey, J., The Quest for Certainty: a study of the relation of
knowledge and action. Gifford lectures ; 1929. 1929, New
York: Minton Balch. 318.

[13] Dewey, J., Logic: the Theory of Inquiry. 1938, New York,
NY: H. Holt and Company.

[14] Ducournau, R., M. Habib, M. Huchard, and M.-L. Mugnier.
Proposal for a Monotonic Multiple Inheritance
Linearization. in Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA’94). 1994.

[15] Elrad, T., R.E. Filman, and A. Bader, Introduction to aspect-
oriented programming special issue. Communications of the
ACM, 2001. 44(10): p. 29-32.

[16] Gedenryd, H., S. Holland, and D.R. Morse. Meeting the
software engineering challenges of interacting with dynamic
and ad-hoc computing environments. 2002. Submitted.

[17] Goldberg, A. and D. Robson, Smalltalk-80: The Lanaguge
and its Implementation. 1983, Reading, MA: Addision-
Wesley.

[18] Goldstein, I.P. and D.G. Bobrow. Extending Object Oriented
Programming in Smalltalk. in Proceedings of the First Lisp
Conference. 1980.

[19] Gottlob, G., M. Schrefl, and B. Röck, Extending object-
oriented systems with roles. ACM Transactions on
Information Systems, 1996. 14(3): p. 268-296.

[20] Hedin, G. Reference Attributed Grammars. in Second
Workshop on Attribute Grammars and their
Applications–WAGA99. 1999.

[21] Holland, S., D.R. Morse, and H. Gedenryd. Ambient
Combination: a New User Interaction Principle for Mobile
and Ubiquitous HCI. 2002. Submitted for review.

[22] Ingalls, D., T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the Future: The Story of Squeak, A Practical
Smalltalk Written in Itself. in Proceedings of OOPSLA’95.
1995.

[23] Jones, N.D., An Introduction to Partial Evaluation. ACM
Computing Surveys, 1996. 28(3): p. 480-504.

[24] Kay, A., The Early History of Smalltalk, in History of
Programming Languages–II, T.J. Bergin and R.G. Gibson,
Editors. 1996, ACM Press: New York. p. 511-578.

[25] Kempf, J., W. Harris, R. D’Souza, and A. Snyder.
Experience with CommonLoops. in Conference on Object-
Oriented Programming Systems, Languages, and

Applications (OOPSLA'87). 1987.

[26] Kendall, E.A. Role model designs and implementations with
aspect-oriented programming. in Conference on Object-
Oriented Programming Systems, Languages, and
Applications (OOPSLA’99). 1999.

[27] Kiczales, G., et al., Getting started with AspectJ.
Communications of the ACM, 2001. 44(10): p. 59-65.

[28] Kiczales, G., et al. Aspect-Oriented Programming. in
Proceedings of the European Conference on Object-Proented
Programming ECOOP’97. 1997: Springer Verlag.

[29] Kiczales, G., J.d. Riviéres, and D.G. Bobrow, The Art of the
Metaobject Protocol. 1991, Cambridge, MA: MIT Press.

[30] Knuth, D.E., Semantics of context-free languages.
Mathematical Systems Theory, 1968. 2: p. 127-145.

[31] Lieberherr, K., D. Orleans, and J. Ovlinger, Aspect-oriented
programming with adaptive methods. Communications of
the ACM, 2001. 44(10): p. 39-41.

[32] Lieberman, H., Using prototypical objects to implement
shared behavior in object–oriented systems. SIGPLAN
Notices, 1986. 21(11): p. 214-223.

[33] Lopes, C.V. and W.L. Hursch, Separation of Concerns, .
1995, College of Computer Science, Northeastern
University, Boston, MA.

[34] Ossher, H., M. Kaplan, W. Harrison, A. Katz, and V.
Kruskal, Subject-oriented Composition Rules. Proceedings
of OOPSLA’95, ACM SIGPLAN Notices, 1995. 30(10): p.
235-250.

[35] Ostermann, K. and M. Mezini. Object-Oriented Composition
Untangled. in Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’2001).
2001.

[36] Smith, R.B. and D. Ungar, A Simple and Unifying Approach
to Subjective Objects. Theory and Practive of Object
Systems, 1996. 2(3): p. 161-178.

[37] Snyder, A. Encapsulation and inheritance in object-oriented
programming languages. in Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA’86). 1986.

[38] Stein, A. Delegation is inheritance. in Conference on Object-
Oriented Programming Systems, Languages, and
Applications (OOPSLA'87). 1987.

[39] Tarr, P., H. Ossher, W. Harrison, and S.M. Sutton. N
Degrees of Separation: Multi-Dimensional Separation of
Concerns. in Proceedings of the International Conference on
Software Engineering (ICSE'99). 1999.

[40] Ungar, D. and R.B. Smith, Self: the power of simplicity.
Lisp and Symbolic Computation: An International Journal,
1991. 4(3): p. 45-55.

[41] VanHilst, M. and D. Notkin. Using role components to
implement collabration-based designs. in Proceedings of
OOPSLA’96. 1996.

