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ABSTRACT
The areas of inheritance, aspect-oriented programming and role-
based decomposition share the same problem: For all three, the 
number of candidate schemes is large, all of them different and 
none of them clearly superior to the rest. Instead of proposing 
another variation on any of them, this paper presents a simple, 
unified approach to program composition. The scheme is shown 
to be compositionally complete, that is, to be sufficient for 
defining any program composition that is theoretically possible, 
and therefore forms a superset of all other approaches to program 
composition. The paper shows how this scheme specifically may 
supersede inheritance, aspects, and roles. It goes on to show via 
examples how the scheme can be used as a practical object-
oriented language construct. Lastly, it demonstrates how the 
scheme can be combined with program specialization to yield 
very good runtime performance. This scheme can make object-
oriented languages smaller, yet substantially more powerful and 
expressive than they currently are.

1. MOTIVATION
diverging approaches
The topics of inheritance, aspect-oriented programming and role-
based design each have a huge literature devoted to them. From 
the early days, inheritance has been known to be imperfect [24]; 
its various problems are well documented [9, 14, 37], and a large 
number of variations [8, 9, 25, 35] and alternatives [18, 24, 32, 
40] have been proposed. However, rather than offering a 
resolution or identifying a winning candidate, the various 
approaches have diverged so that no clearly superior alternative is 
available today, especially not if simplicity is desired.

In aspect-oriented programming (AOP) there are also a number of 
different solutions to similar but not identical problems [11, 15, 
27, 28, 31, 39]. And beyond this divergence, there is a lack of 
well-defined foundations. The central concepts of AOP, such as 
“aspects” or “crosscutting”, have not been well articulated, and 
the formal basis of AOP seems not to have been addressed: Just 
what is it that AOP allows us to do that we otherwise cannot do, 
and what added formal powers do AOP extensions bring to a 
language? In contrast, general-purpose programming language 

constructs usually have well-defined semantics and formal 
foundations. These are the properties whose absence tends to 
prevent specialist techniques from being adopted as dependable 
and widely applicable solutions. 

Finally, role-based design and problem decomposition  are 
probably as old as object-oriented programming itself, even 
though the technique has only been gradually articulated over the 
years [2, 5, 19, 41]. However, roles typically lack language 
support and their application therefore requires compromises or 
the use of roundabout techniques [26, 41]. It is also worth noting 
the great family resemblance of the various techniques 
surrounding roles, aspects, perspectives [6, 9, 18, 24], subjects 
[34, 36], and so on. So also here, like in the two previous areas, 
the divergence of approaches and lack of a clear resolution is 
holding back widespread adoption of any solution.

1.1. A proposed resolution
The object of this paper is not to present yet another variant of any 
of these schemes. Instead, the key idea behind it is to take a step 
back to recognize that all of the above techniques are different 
approaches to composing programs and objects. What if we try to 
address the problem of program composition in general, once and 
for all? If we found such a scheme, it would be able to supersede 
all of the above approaches. The answer to this question is the 
actual topic of this paper—a simplest, yet fully comprehensive 
approach to composing objects and programs.

Still, the purpose is not to present a highly sophisticated and 
complex solution to a very hard problem. On the contrary, the aim 
is to show that the problem is much less difficult than it might 
seem. To obtain a general but also simple solution, the chosen 
strategy was to reduce the necessary ingredients to their essence, 
and then to allow them to be applied in the most general way 
possible. A beautiful example of this approach was the 
demonstration that only two language constructs (if…then and 
while…do) are needed for describing any Turing machine [7]. 
This demonstration was essential to the development of structured 
programming, and it shows how very simple but sufficiently 
general elements can be used to generate very complex results. 
Moreover, it also shows that simplicity itself is the key to 
achieving this generality. Clearly, this work set a standard that the 
present work could merely aspire to attain.

The following section introduces the view of composition that is 
taken here, and shows how inheritance and aspect-oriented 
programming can be expressed as program composition. It 
thereby lays the groundwork for the demonstration of 
compositional completeness that follows it. The next section 
describes the practical programming approach that results from 
the theoretical principles, and this is also where role-based design 
enters the picture. The remainder of the paper gives some example 
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applications of the resulting approach. The final example 
addresses an extremely performance-sensitive application. It 
illustrates how this scheme can be used to obtain very well-
structured designs and highly decomposed implementations 
without sacrificing runtime performance.

2. Composing programs by assembling parts 
into new wholes

The view of objects and programs as compositions is essential for 
the demonstration of compositional completeness. The aim of the 
present section is to make the reader accustomed to this point of 
view before taking on the more theoretical discussion.

2.1. The Concept of Composition
Since the term composition is so central to this effort, it deserves 
to be clarified: The act of composition is the building of complex 
entities by assembling distinct part entities to form new whole 
entities. The composition of an entity is synonymous with the 
structure of an entity, and refers to the part–whole relationships 
between an entity and its sub-elements. Conversely, 
decomposition refers to breaking a whole down into parts. 
Compositions are conventionally drawn as box-and-arrow 
diagrams, where “whole” boxes have arrows pointing to their part 
boxes, or alternatively as with trees, use plain lines instead of 
arrows whenever parts are always placed below their wholes 
(figure 1). 

There also ought to be a single name for the elements that are 
composed; however, all the good names have already been 
claimed for various purposes. The best candidate would otherwise 
be component, as the meaning of this term is simply “an element 
in a composition”. Instead I will mostly use the term part, as it is 
succinct and clear—you build things out of parts—and not 
heavily associated with any specific technical meaning.

Whereas composition concerns the structural view of software, 
the complementary view concerns content—without it, any 
composition is just an empty structure with no capabilities, and 
conversely, the composition puts together trivial content 
primitives into more complex, higher-level capabilities. The 
content primitives of software are state (data) and behavior (code) 
primitives. The distinction between structure and content is the 
same as the one between syntax and semantics.

This paper will focus on the composition of objects, which easily 
generalizes into the composition of programs in general. In pure 
OO languages the reason is straightforward: since everything is 
an object, general object composition is sufficient to compose 
every element of a program, including modules, name spaces, etc. 
In non-pure OO languages such as Java and C++, the same 
principles will have to be repeated for the non-object language 
constructs.

The fundamental form of object composition is that an object 
refers to other objects via its instance variables, or slots following 
Self terminology [40]. This is how you define part–whole 
relations between objects, and in this particular respect objects are 
similar to records in non-object-oriented languages. This type of 
composition uses the most well-known composition principle for 
software, hierarchical composition, which allows the building of 
tree structures. Such structures can be described by context-free 
grammars [30], which consist of a number of rules of the form 
Whole → Part1, Part2, … PartN.
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Figure 1. A basic part–whole composition: 
an object with two slots.

2.2. Inheritance as Composition
The next step to understanding object composition is to reinterpret 
inheritance as a form of composition. The contents of any class 
(state and behavior) are composed from the contents of its 
superclasses, i.e. the elements in its inheritance graph. However, 
inheritance relations are not normally drawn as the inheritance 
graph of a single class, but as class hierarchies, which show how 
several classes are related to each other by inheritance (figure 
2a).From this class hierarchy we need to extract the inheritance 
graph of a single class. In the case of single inheritance, this is not 
a tree, but always a linear chain connecting the class and its 
superclasses. Furthermore, to follow the convention of always 
having the root of a composition at the top of the diagram, we 
need to turn this graph on its head (figure 2b). This view implies 
that in some sense the superclasses should be regarded as parts of 
the derived subclass. This finds support in a version of the same 
diagram where the objects’ memory layouts are explicitly drawn 
(figure 2c). This version shows that the super slots contain the 
actual links from subclass to superclass (also, dashes indicate that 
some parts have been left out). 

Since we are interested in the composition of objects, not just 
classes, figure 3a adds the actual composed object at the top of the 
composition diagram. It also makes the class field explicit, to 
show that this slot is no different from other slots from a 
compositional point of view, even though it is typically treated 
differently (for good reason). Figure 3c displays the same 
composition as figure 3c, but no longer in the memory-layout 
format. The dashed outline marks the most important parts of the 
object’s composition. At this point, the inheritance graph has been 
“normalized” so that the special semantics of inheritance that is 
unrelated to composition is ignored, and only the part–whole 

Figure 2. Inheritance as composition I: (a) Class hierarchy. (b) Inheritance graph. (c) Object format.
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compositions of object, class and superclasses are expressed in 
the diagram. That is, the class and superclasses are drawn as any 
other elements in the composition of the object. As a result, figure 
3c represents the object purely in terms of parts and subparts; this 
is the purely compositional view of the object and its inheritance.

2.2.1. De-encapsulation
The remaining element to explain is the asterisks that mark the 
superclasses in these diagrams. This is the same convention that is 
used in Self, for designating “parent slots” or “shared parts” [10]. 
Although the effect is the same, here its meaning will be slightly 
generalized, to indicate de-encapsulation of the marked entity. 
Since encapsulation is essential to object-oriented composition, 
the regular part objects (as referenced by instance variables, slots, 
etc.) do not share their contents with the owning object they are 
part of—they encapsulate their contents. In Smalltalk, for 
example, the owner object cannot access the contents of its 
instance variables except by ordinary message passing. Similarly, 
in Self the messages defined by a part object cannot be accessed 
by sending messages to the owning “whole” object, as they are 
encapsulated. However, a parent designation in Self means that 
messages defined by the part object will be shared with the whole 
object. That is, the parent or sharing designation de-encapsulates 
the messages, so that they will work as though they were part of 
the whole object itself. (Overriding will be disregarded since it is 
less relevant here.) Inheritance, as for example in Smalltalk, has a 
similar de-encapsulating effect [37], firstly because a subclass can 
directly read and write the variables defined by its superclasses, 
and secondly because messages defined in superclasses also work 
as though they were defined in the subclass (again ignoring 
overriding). So the difference between regular variables and the 
superclass in Smalltalk is the same as between regular slots and 
parent slots in Self. From the point of view of object composition, 
if  we would distill the property that distinguishes 
inheritance/delegation from regular part–whole composition 
down to its purest form, the remaining element is de-
encapsulation. (For example, the principle of overriding is a 
practical consequence of this principle.) Accordingly, in the 
above diagrams the super slots are marked with an asterisk to 
indicate de-encapsulation.

2.2.2. The similarity to Self
There are now striking similarities between figure 3c and how the 
inheritance/delegation model of Self is usually represented [10, 
40]. If the same organization would be used in Self (which is not 
how it would be done in true Self style), the resulting diagram 
would look like figure 3b. That is to say, the composition would 
be exactly the same, beneath Self’s slightly different semantics 

and terminology. This is no coincidence: Self radically 
regularized the previously quite disparate mechanisms for object-
oriented composition when it unified parents with regular slots, 
and also enabled any slot to be marked as a parent, not just the 
super slot of Behavior objects, as in Smalltalk. For these reasons, 
the Self language went further than any other language toward the 
scheme that is presented in this paper. 

In the interest of brevity and simplicity, delegation will be 
subsumed under the general umbrella of inheritance in what 
follows, as it concerns the same general type of composition [10, 
38].

2.3.  Aspect-oriented programming 
as composition
Within aspect-oriented programming, the aspect concept itself has 
undergone a gradual transition from the early days to the present 
day. In the beginning, aspects and concerns (as in “separation of 
concerns”) were not thought of in terms of composition or 
structure, but rather as certain domains of functionality [28, 33]. 
Firstly, the prototypical examples of aspects were all related to a 
certain functionality: synchronization, distribution, exception 
handling, and so on. Secondly, the general approach was to 
address each such domain with a separate, domain-specific aspect 
language (ibid.). Thirdly, when the aspect concept was introduced, 
it was defined in terms of functionality, as “units of system 
decomposition that are not functional” [28]. Also, a crucial 
distinction was made between the basic functionality of a 
program, which could be decomposed by existing language 
constructs, and “non-functional” concerns  that had to be 
addressed by aspectual decomposition. At that point, the AOP 
field had not yet, as it were, separated the composition aspect of 
software from the domain or content aspect.

There is further evidence of this gradual shift from the initial 
domain-oriented accounts, over the just quoted mixture of 
functional and compositional terminology, to a more purely 
compositional view of aspects in recent times, as displayed e.g. in 
[15]. For example, the earliest versions of AspectJ had domain-
specific sub-languages, whereas more recent versions have taken 
a independent and content-agnostic approach. To follow these 
developments to their logical conclusion, the position taken here 
is that aspects are a purely compositional and content-agnostic 
concept. Or in other words, aspect-oriented programming is all 
about aspectual composition. 

Figure 4 shows the composition graph for an example application 
of AOP, which illustrates the essence of aspectual composition. In 
this example, the basic functionality of two classes have had an 
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Figure 3. Inheritance as composition II: (a) Smalltalk object layout. (b) Self-like version of 3a. (c) Composition diagram 
for the same object. Each figure shows a partial view of the composition graph.



aspect for exception handling added to them. (To achieve clarity, 
some less relevant details of the AOP style are not represented 
with full accuracy in this example.) The graph shows how aspects 
enter into an implementation on several levels: the exception-
handling aspect has subcomponents that are distributed across the 
implementation, at the levels of both classes and methods 
(methods not shown). 

The distinguishing concept of aspectual composition is what is 
known as tangling or crosscutting [28]: aspects crosscut or tangle 
an application in that they are distributed across its composition in 
such a manner that they cannot be properly separated with the 
means provided by conventional languages. As figure 4 also 
shows, crosscutting is directly captured by a composition graph: 
the part–whole relationships of the aspect crosscut the 
composition of the rest of the application. The crux of aspectual 
composition is to allow such crosscutting structures to be defined 
and dealt with in a convenient manner. Notably, this cannot be 
handled by rules for hierarchical composition. 

3. Achieving compositional completeness
Instead of trying to directly address the nature of aspectual 
composition, we will now address the ability to define and work 
with any composition that is theoretically possible. Thus we 
return to the issue of achieving compositional completeness, and 
this in turn will prove to reveal the precise nature of aspectual 
composition. While the proof applies to the composition of any 
system in the sense of systems theory, our concern is the 
composition of software. The demonstration that follows will not 
be presented as a formal proof but will instead emphasize 
explanation.

3.1. The compositions
We have so far encountered three composition principles. The 
simplest one is linear composition, which only allows simple 
chains. Such compositions are defined by 1 → 1 rules. For 
example, single inheritance chains are formed by individual 
subclass/superclass declarations such as “Integer is a subclass of 
Number”. The next principle in order of power is hierarchical 
composition, which allows proper trees, and these compositions 
are defined by 1 → N rules (one whole, several parts). This is 
exemplified by instance variable definitions such as “Morph has 
the instance variables bounds, position, and color”. 

The third composition principle was aspectual composition, 
which so far hasn’t been defined in more precise terms than as 
being “crosscutting”. But instead of examining this concept more 
closely and adding a new form of composition, and later possibly 
another one and another one, the approach taken now is to address 
the general problem, once and for all as it were. Fortunately this is 
not as hard as it may appear. Everything required is covered by 
relatively simple and well-known concepts of computer science.

3.1.1. Delineating the class of compositions
The first step toward a solution is to understand what such a 
structure may be like, or in other words, to delineate the class of 
structures that need to be handled. As noted earlier, compositions 
informally correspond to box-and-arrow diagrams, and 
hierarchical compositions correspond to the subset of these 
diagrams that form proper trees. Moreover, we know that 
composition diagrams always describe part–whole relationships. 
For this reason, only cycle-free diagrams need to be handled. This 
is because part–whole relations are directed, one-way relations, 
which means that an entity cannot be part of itself, neither directly 
nor indirectly. This is merely a matter of fact, since there is no 
meaningful interpretation of something being a part of itself. 
Moreover, it is not a crucial condition for the proof; however, it 
greatly simplifies the explanation.

As it turns out, this information is all we need. Thus in informal 
terms, the complete composition mechanism we seek will need to 
handle all cycle-free box-and-arrow diagrams that can possibly be 
constructed. In more formal terms, this corresponds to the class of 
directed acyclic graphs (DAGs, cf. figure 4a). Formally, links are 
one-way because the part–whole relation is asymmetric, and we 
are thus dealing with directed graphs. Similarly, we are dealing 
with acyclic graphs because of the restriction to cycle-free 
relations. Hence, in formal terms, a compositionally complete 
scheme must be able to compose any directed acyclic graph, 
where the graph represents part–whole relationships between the 
composed entities.

3.1.2. Covering the class of compositions
The second step is to identify the format of the rules needed to 
describe such structures. As previously noted, the theory of 
syntactic structures states that tree structures can be described by 
context-free grammars [30]. The same theory also says that 
attribute grammars are required for describing DAGs, and to 
some extent this defines the rules that are needed. However, this is 
not a purely theoretical exercise, but should result in a practical 
technique for design and implementation. Thus, the rules should 
be expressed in a maximally useful and sensible format. To reach 
that point the nature of these DAG structures needs to be clarified.

 The approach taken here is to regard DAGs as a generalization of 
hierarchical structures; this is simply the complement of the fact 
that trees make up a subset of DAGs. Hierarchical decomposition 
in programming languages is already well-established, it is the 
foundation of structured programming as we know it, and trees 
are widely recognized to be rather easy to understand and reason 
about, as well as practical to deal with. But there is also a special 
reason for treating DAGs as an extension of tree structures. Very 
often the additional power of composition afforded by DAGs is 
not needed, but composition into trees will be sufficient. In these 
cases the extension will be transparent, and the new scheme will 
be equivalent to hierarchical composition. And when the 
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additional power is needed, it will appear as an extension to 
hierarchical composition, not as an entirely new and different 
composition scheme. So this means that the new scheme becomes 
a strict extension of hierarchical composition, which doesn’t 
complicate the composition of more simple structures.

3.1.3. Making all compositions treelike
The operation that turns DAGs into treelike structures follows 
from the fact that these structures are acyclic. This means that 
DAGs like trees can be drawn so that a parent node always 
appears above its children (or wholes above their parts). 
Formally, this corresponds to performing a topological sort on the 
nodes of the graph [1]. (The topological sort operation is what 
requires the graphs to be directed and acyclic; relaxing these 
constraints would complicate the principles and make them harder 
to use, but wouldn’t invalidate them.)

The topological sort transform the normally disorderly-looking 
DAGs into quite a treelike format. The formal remaining 
difference between DAG.s and trees lies in that a tree node may 
have any number of outgoing arrows but only one incoming 
arrow, whereas the nodes of a DAG lack the last restriction, they 
may have any number of incoming arrows as well. That is, 
whereas a tree node always has only one parent, a DAG node may 
have multiple parents. 

In a topologically sorted DAG diagram (cf. figure 4b) these 
multiple parent links can be seen as though they were additional 
crosscutting links added to a regular tree. Thus, the formal 
difference between DAGs and trees can be fruitfully characterized 
as parent nodes being able to “cross-reference” or “hyperlink to” 
their children. This also shows that the most convenient form of 
attribute grammars for this domain is referential attribute 
grammars [20]: Trees are described by context-free Whole → 
Part rules, and to describe DAGs the only kind of “attribute” we 
need to add to these rules is cross-references to other nodes in the 
composition tree. In practice, these are not treated as “attributes” 
but as any other part of a composition.

This additional ability of DAGs to cross-reference nodes is just 
what is needed—and it is all that is needed—for aspectual 

composition. In the previous example, ordinary Whole → Parts 
rules were sufficient for describing the composition of the main 
program, as well as the aspect as such, but to bind the aspects to 
their proper locations we need the ability to make cross-references 
between elements. Moreover, this amounts to the exact and entire 
difference between hierarchical composition and the ability to 
compose anything that is theoretically possible. That is, as 
described here, aspectual composition amounts to this exact 
difference.

3.2. Perspectives
The last step toward practicality is to avoid the overlaps in a 
topologically sorted DAG by decomposing it into subtrees (figure 
5). This operation derives from the fact that any given 1 → N 
relation does not contain any overlap, and that an N → 1 relation 
(i.e. several parents referencing the same child) can be divided 
into N simple 1 → 1 relations. By applying this principle 
recursively, any topologically sorted DAG can be untangled into a 
number of simple subtrees. This technique may be considered as 
taking different perspectives on the overall composition DAG: 
when a child node is cross-referenced by several parents, it may 
be regarded as being part of more than one perspective, each 
corresponding to one parent.

Since perspectives make up the crucial technique for untangling 
complex compositions, they deserve to be given a special status 
within the language and tools. Here, a simple diagrammatic 
convention can be used to represent them, or more precisely, to 
hide them, as illustrated in figure 6a. Instead of drawing the full 
structure of the perspective into the diagram, one edge of its 
parent is emphasized to represent the perspective. The heavier 
edge can be thought of as a stylized image of a dimension that 
isn’t fully visible from the current point of view (figure 6b). 

While perspectives resemble aspects, they are much older as an 
object-oriented technique [6, 9, 18]. From their origin in 
knowledge representation, they are also more powerful and 
general in their application than aspects, for example in their 
potential to replace inheritance [9, 18, 24]. Here we may give 
perspectives a precise definition in terms of compositional 

Figure 4. A directed acyclic graph (a), and (b) the same graph toplologically sorted to place all parents above their children.

Figure 5. Untangling a crosscutting DAG into regular trees. On a conceptual level, each tree corresponds to a perspective.



completeness: A perspective corresponds to a subtree of the 
composition graph of an object. Since the subtree spans exactly 
those part nodes that are reachable from the root node, any 
perspective is uniquely defined by the root part. Strictly, in this 
definition every part becomes a perspective, and since parts obey 
encapsulation, each one sees only its own subparts, i.e. “its own 
point of view” of the whole composition. However, there is an 
added capability-like facility that corresponds to “taking a 
perspective on” an object from the outside. Thus if another object 
has a reference to this perspective, then any access to the object 
via this reference will be restricted to the protocol understood by 
this perspective, rather than to the protocol of the whole object. 
The protocol of the perspective consists of the methods defined in 
the root part (or its de-encapsulated subparts). A simple 
implementation of this facility is to associate a perspective with 
its own, separate selector name space.

4. Applying the scheme in practice
Section 2 illustrated how inheritance and aspect-oriented 
programming can be reformulated as special cases of generalized 
composition. The rest of the paper will present the scheme in its 
own terms, using its own preferred style for performing program 
composition, rather than to emulate other schemes such as aspects 
or inheritance.

4.1. The nature of the composed parts
So far, little has been said about the units of composition, the 
parts (or informally the boxes of the diagram), and their contents. 
On a theoretical level, it is necessary and sufficient that a part 
may contain other parts plus the basic units of content. These 
basic units are the primitives of state and behavior that cannot be 
decomposed into more elementary units. The power of the 
composition scheme allows the composed units to be reduced to 
their simplest possible form, since they still can be composed to 
any level of complexity.

For a practical programming language construct, the 
corresponding solution is slightly different. The primitive unit of 
state is a word of memory; in practice this translates to an 
instance variable holding an object reference, as is normally the 
case. However, the basic unit of behavior will not be primitive 
instructions but methods. This is because methods, the provisions 
that languages already have for composing behavior, are 
sufficient as they are. In the interest of simplicity they are 
therefore not replaced. So, in practice a part may hold objects, 
methods, and other subparts, or rather references to them. 
Extending Self’s concept, we may collectively refer to 
these—holders of not just state and behavior as in Self, but of all 
three kinds—as slots. 

Parts, the basic units of composition, therefore become highly 
similar to ordinary objects. A part has the same semantics as an 
object, and composing an object out of parts follows the usual 

principles for composing objects out of other objects, but for one 
provision: just as an object need not contain a copy of each of the 
methods it responds to, an object also doesn’t have to contain a 
copy of each of its parts. Hence, parts belong to an object’s 
abstract composition, but need not be explicitly stored within the 
object they compose.

4.1.1. The advantages of encapsulating parts
Since parts can contain state but also observe encapsulation, this 
allows state to be encapsulated by the functional parts to which 
the state properly belongs. This is not typically possible using 
inheritance and is not allowed by e.g. Self or Smalltalk. However, 
here it is not merely possible—it is even the preferred style of use. 

This lack may be perceived as an insignificant drawback in 
current languages. If so, however, this is probably because their 
inheritance mechanisms place a rather low limit on the number of 
units (superclasses) an object can be composed from. Thus not 
being able to keep the state of these parts separated will usually 
present few problems. Still, whenever the “fragile base class” 
issue does become a significant problem (i.e. when sub- and 
superclasses have conflicting instance variable names). The 
fragile base class problem is resolved by the encapsulated parts of 
the present scheme. Also cf. [37].

However, more importantly, when properly applied the present 
scheme leads to a much higher degree of complexity in the object 
compositions. In its most complex application so far, the average 
objects were composed out of around 30+ subparts; the extreme 
case was an object with 70+ subparts (while still having no more 
than three or so instance variables). Moreover, some subparts 
would occur multiple times within the same object, and in some 
cases they would even recursively contain a different instance of 
the same kind. The object with 70+ subparts was in fact composed 
out of two of the 30+ compositions, plus the necessary connecting 
elements. 

Lastly, the use of multiple, potentially conflicting perspectives 
within one object also vitally depends on the ability to keep the 
internals of different perspectives from conflicting with each 
other. For these reasons, the ability to encapsulate a part’s 
contents—i.e. state, behavior and subparts—becomes crucial and 
indispensable once one starts to exploit the abilities of this scheme 
to create more elaborate compositions.

4.2. Functional decomposition, a.k.a. role-
based design
A scheme that is compositionally complete brings the full 
freedom to structure a system in any possible way. Moreover, the 
scheme itself is neutral with respect to what it composes, and 
therefore any semantical interpretation could be applied to the 
composed parts. This leads to the following question: When you 
can choose any principle whatsoever for decomposition, what 

Figure 6. (a) Hiding a perspective (compare to figure 5). (b) the black edge is a stylized representation of a hidden dimension.



principle do you choose? (Inheritance, for example, uses is-a-
kind-of relations.)

On a theoretical level the approach propose here is 
instrumentalism. Its guiding principle is the analysis of 
phenomena in terms of their function, purpose, or effect. 
According to this position, the proof is in the eating of the 
pudding, as opposed to in the pudding itself. Articulated by John 
Dewey in the early 20th century [12, 13], instrumentalism is still 
the state of the art for theories of knowledge, and as far as its 
ability to scale is concerned, it has provided the basis for e.g. 
modern physics (including quantum mechanics and other 
nontrivial domains) for almost a century; this ought to provided 
some reassurance in this regard. 

Thus, the principle proposed here is to decompose problems in 
terms of function or purpose, and to let each unit of composition, 
each part, represent one such function. As it happens, this turns 
out not to be an entirely novel idea. Such a functional part 
corresponds to a role in role-based design [2, 41] and a 
responsibility in CRC terminology [5]. These role-based 
approaches seem to have reinvented instrumentalism on a 
practical level, for use as a design and analysis technique. From 
this point of view, a part might be regarded as a simplest language 
construct for representing roles or responsibilities. This has 
otherwise been a difficulty in turning role-based designs into 
object-oriented implementations [3, 19, 26, 41].

Thus, the present scheme is fortunate to draw on how role-based 
analysis has established itself as a reliable, practically proven 
approach through years of OO practice. The analysis of 
Model–View–Controller in [5] can illustrate how role-based 
analysis translates into the current scheme. This example states 
the View object in MVC as having the responsibilities Render the 
model and Transform coordinates, and the Model object as 
having the responsibilities Maintain probem-related info and 
Broadcast change notification. Here, each of the responsibilities 
would correspond to one functional part, and to give an object the 
ability to broadcast change, one would add this functional part to 
the object. In informal terms, this corresponds to “giving” it this 
ability or functionality, which is the essence of what being a 
Model is about. Currently you instead inherit this functionality via 
Object, which with multiple inheritance would be from Model. 
Recognizing that an object has this functional part, rather than it 
being a subclass of Model, arguably provides a clearer and 
conceptually more direct explanation of what the object does. 
This clarity follows from basing the analysis on what an object 
does rather than what it is; in other words, the instrumental point 
of view.

4.3. An example application
The next example comes from using this scheme to solve a 
research problem within Ubiquitous Computing [16]. It was the 
third application domain that this scheme has been applied to. It 
will here serve to illustrate two points: Firstly, how this scheme 
may obtain a much better separation of concerns than inheritance, 
and secondly, how the scheme is used for aspect-like 
compositions. The research problem is based on allowing 
physical computing devices and virtual, digital objects in 
ubiquitous computing environments to interoperate in various 
configurations, in a manner that is smooth and transparent to the 
user, and without requiring any configuration effort to make the 
interoperations work. The technique involved allows a user  to 
specify (or “combine”) various physical or virtual objects using a 
magic wand-like combination device [21]. The wand is currently 
implemented as a handheld computer that uses infrared signals for 

object selection and wireless networking for inter-device 
communication. Similarly the devices involved have infrared 
receivers to pick up the selection signal. In a representative 
scenario, the user would for example select a document on a tablet 
computer and then select a wall-based display, by pointing at each 
of them in turn. 

The task of the combination algorithm is to identify the possible 
meaningful actions that could result from combining the selected 
objects, to allow these actions to be presented as options on the 
wand’s display. The user may then carry out an operation by 
simply selecting it. The prototypical operation to result from the 
above combination would be to show the document on the wall 
display. Some advantages with this technique, besides 
transparency of use, are that a user can come into an environment 
and immediately start using the available technology without 
knowing the device addresses, or knowing the available 
functionalities, or even the commands required to use a certain 
functionality. 

The wall display and the document are given as arguments to the 
combination algorithm. The arguments are provided as objects, 
having been retrieved in a prior stage. If these domain objects are 
modeled using inheritance, the usual problems of inheritance 
present themselves, if perhaps to an unusually high degree: It is 
hard to isolate interactions and combinations, so a great deal of 
code duplication is necessary, and hand-coding of individual 
combinations is required to handle each case correctly. As a 
result, the combination algorithm is distributed across every class 
in the domain model, with a great deal of redundancy and brittle 
cross-dependencies. If there is such a thing as “code smell”, then 
in this case there is something truly rotten in the state of Denmark, 
due to the limitations of inheritance. These problems are more 
fully described in [16].

When the present composition scheme is used instead of 
inheritance, the various objects are decomposed into their 
functional parts. Here, the relevant functions are that the 
document is visually Renderable, and the wall display is a 
Renderer, capable of displaying anything that is renderable. To 
render the document on the display, the Renderable and Renderer 
parts in the respective objects enter into a classical collaboration 
pattern. The use of functional composition in itself guarantees that 
combinable properties now may always be represented once and 
only once, instead of having to distribute the combination code 
across all the various entities that could participate in a rendering 
operation. (From the above principles it even follows that “once 
and only once”, i.e. redundancy-free composition, can be attained 
for any composition problem. This point is however beyond the 
scope of theis paper.)

It bears noting that the solution architecture so far is not 
specifically tailored to serve combination finding, but uses the 
conventional approach (functional decomposition), which thus 
proves highly suitable for implementing device capabilities in a 
useful way. In contrast, inheritance would say that a Document is 
a kind of VirtualObject, a PDA a kind of Computer, and so forth, 
but this wouldn’t provide much help for either the problem of 
representing device capabilities, or to finding combinations. 
However, because the analysis in terms of function is not 
restricted to one point of view, but can handle multiple 
functionalities in parallel, the combination functionality can now 
be added in a manner that meets two important conditions: it is 
noninvasive and it suits the problem of finding combinations. The 
resulting solution is based on adding combination functionality as 
a separable perspective (roughly corresponding to and aspect)



The basic device functionality is provided as ordinary methods; 
The Renderable part contains methods for rendering the 
document, and the Renderer part has methods and state that 
implement the rendering of renderable entities on its surface. In 
actual fact both of these functional parts would themselves have 
rather elaborately decomposed implementations. 

The additional information needed should annotate the specific 
operations that would be made available; for Renderer the 
message render: aRenderable would be indicated along with a 
description of the operation, “Display <the renderable> on <the 
renderer>”, which would be used to present the operation in a 
menu. To avoid adding this information to the Renderable part 
itself, it is instead provided non-invasively by adding a 
Combinable part to the Renderable part, and to any other parts 
that should be involved in the combination algorithm.  The 
Combinable parts all belong to the Combination perspective, and 
this is where they are specified for combinable objects, by cross-
reference to these basic objects. 

The composition of a Document object would now look similar to 
figure 7. Here there are some special compositional features 
worth noting. Firstly, the basic functional parts are de-
encapsulated, since the wall display object itself should “acquire” 
the basic functionalities, that is be able to respond to for example 
the render: message. However, the contents of the Combinable 
parts in turn are encapsulated, and so a Document does acquire 
the abilities of being Renderable and being Authored, but not 
those of being Combinable. Secondly, the diagram convention of 
leaving out this perspective is shown in AC3; this corresponds to 
browsing the system from a different point of view.

Renderable *

Document

Authored *

Combinable Combinable

Combination

Renderable *

Document

Authored *

Figure 7. (a) A Document with Renderable and Authored 
parts, each having a part belonging to the Combinable 
perspective. (b) The perspective left out of the composition 
graph.

The inheritance version of the combination algorithm would have 
handwritten code in the classes of every potential combinee, 
where these would send messages to each other to negotiate 
whether they make a valid combination, and if so, what operations 
would apply. Here, a valid combination can be specified simply 
by indicating for each Combinable what its corresponding 
combinee is; one indicates simply that a Renderer part can be 
combined with any Renderable, and so on. This information is 
provided in a noninvasive manner in the various Combinable parts 
(figure 7).

This version of the search algorithm exploits the fact that 
functional parts are first-class objects, and therefore uses 
reflection to traverse the composition graphs of the two potential 
combinee objects, to single out those basic functional parts that 
have Combinable subparts (cf. figure 8) added to them. The 
eligible Combinable parts in the two objects are then exhaustively 
searched for matching pairs. In this case, Renderer in the 
WallDisplay object specifies Renderable as its partner, and such a 
matching part is also found in the Document object (figure 8).

In this manner the information can be provided in a structured 
fashion that suits the problem, and so the combination search 
becomes drastically more simple, and it does not require any 
combination code to infiltrate the basic implementation. Instead 
the search algorithm can be specified in pure form, once and only 
once and in its own functional part; the domain objects need only 
contain annotation information that the search algorithm can use. 

4.4. Composing behavior
Since behavior has a more complex structure than static content, 
the composition of behavior requires special attention. Aspect 
weaving is a central concept in aspect-oriented programming [28]. 
It is the problem of integrating aspect and non-aspect behavior by 
taking the appropriate code from the aspects involved, and 
integrating it with the regular code of the program, “weaving” 
these pieces into a single piece of executable code. In the more 
general-purpose scheme presented here, aspect weaving 
corresponds to the general problem or composing methods out of 
separate pieces of code, as provided by multiple parts. 

The parts of a method, the messages etc., are ordered, they may be 
nested into blocks, and so on. For this reason, some mechanism 
must allow this additional information to be provided when 
different pieces of behavior should be assembled into new, 
composed behavior. The simplest solution is to simply write a 
method that invokes the parts’ methods in the desired order:

printOn: aStream

a printOn: aStream.
b printOn: aStream.
c printOn: aStream.

Figure 8. Schematic of the combination search: All Combinable parts in each combinee are matched against those in the other. 
Here the Renderer–Renderable combination forms a matching pair.

Renderable

…

…

Document …

Renderer

Printer



However, often the same pattern would be repeated for many or 
all methods, so a way of specifying a general pattern for all 
methods is convenient. A common approach both in multiple 
inheritance and aspect-oriented programming is to use directives 
such as before, after and around [27, 29].  However, such 
directives provides an unnecessarily restricted range of options. 
Instead, one may turn the above concrete method into a general 
composition method that has been generalized to work for any 
message. Thus to invoke the implementations in part a, b and c 
you would use the following composition method: 

methodFor: aMessage

aMessage sentTo: a.
aMessage sentTo: b.
aMessage sentTo: c.

A part that writes tracing statements and then passes on the 
message to otherPart could thus be written in the following way:

methodFor: aMessage

Transcript show: 'Entering ...’.
aMessage sentTo: otherPart.
Transcript show: '... leaving’; cr.

This technique allows the full range of the language to be used, 
including more advanced forms of message composition using 
e.g. blocks. For example, the basic functionality of one part could 
be wrapped in exception-handling code provided by another part, 
using block closures to compose the respective parts:

methodFor: aMessage

[aMessage sentTo: computationPart] 
onExceptionDo:  

[aMessage sentTo: exceptionHandlerPart]

This composition method sends the message to computationPart, 
wrapping it in a hypothetical error-handling message 
onExceptionDo:, and if an exception occurs it will send the same 
message to the exceptionHandlerPart. In this way an 
implementation of divideBy: could be separated into the 
respective parts:

Computation>>divideBy: aNumber

^self primitiveDivideBy: aNumber

and 

ExceptionHandling>>divideBy: aNumber

^self primitiveDivideByZeroError

4.5. Static composition using 
program specialization
could send explicit messages
In this way, ordinary message passing works perfectly well for 
composing code from different parts into new whole methods. 
The only provision is that this technique may be rather slow, 
especially since the proper use of the present decomposition 
scheme leads to much higher levels of decomposition, which then 
requires more messages for gluing the individual pieces of code 
together. The result would be poorer performance than with 
existing composition schemes. However, by using program 
specialization, also known as partial evaluation, [23] this can be 
turned into highly efficient runtime behavior. Program 
specialization is a program transformation technique that can be 

regarded as the most general form of code optimization, 
subsuming several techniques of more limited scope, such as 
inlining and constant folding. You specialize a program by 
providing values for some of its input parameters. Program 
specialization then identifies those of the program’s operations 
that can be computed ahead of runtime because all their input data 
is known at the time of specialization. It then outputs a specialized 
version of the program where it has replaced all those operations 
with their results. A trivial application would be to transform the 
expression 3 * 2 + a to 6 + a. Similarly, if the expression 3 * b + 
a is specialized for b = 2, the result will be identical.

The code that results is highly efficient by any measure. The 
effect is that the runtime expense of a computation becomes no 
higher than it absolutely needs to be. This principle may be 
expressed as “when the cost is zero, the price is nothing”: if e.g. 
the result of a certain composition can be computed once and for 
all, then it shouldn’t be computed every time it is invoked. 
inlining
The specialization technique of inlining messages is particularly 
relevant here. Where runtime message passing composes behavior 
dynamically, inlining will do the same thing statically. It does not 
merely early-bind the message receiver, but in effect eliminates 
the entire message, “pasting” the code of the receiving method 
into the sending method, while performing parameter substitution 
and whatever else is necessary to produce an equivalent program. 
The effect is that the message that links the pieces of calling and 
called code will vanish, merging both pieces of code into one. If 
for example the earlier composition method

methodFor: aMessage

[aMessage sentTo: computationPart] 
onExceptionDo:  

[aMessage sentTo: exceptionHandlerPart]

is specialized for a message with the selector divideBy: the result 
would be as follows:

divideBy: aNumber

[self primitiveDivideBy: aNumber] 
onExceptionDo:  

[self primitiveDivideByZeroError]

Here, the messages that invoke the two divideBy: methods above 
have been completely removed, and only the cores of those 
methods remain, one inside each block.

4.6. A second example: BitBlt
intro BitBlt
The following example will illustrate just how efficient the 
resulting code can be when it has been translated from a high-
level design in terms of functional parts, using program 
specialization, and inlining in particular. BitBlt is the original Bit 
BLock Transfer operation of Smalltalk-80, used to transfer bitmap 
graphics e.g. to the high-resolution display [17]. As pixels may be 
smaller than memory words, this involves not merely simple 
memory moving operations, but potentially also shifting the bits 
to handle sub-word positioning. And with the advent of color 
graphics, the operation has been extended to handle the various 
formats that pixels may come in, e.g. 2, 4, or 8 bit color map 
indices, or direct RGB values with alpha channels in 16 or 32 bits 
per pixel. In its general formulation, the operation also includes a 
transfer function, in which case it computes the function from the 
source and destination pixels, and overwrites the destination with 
the resulting value.



Slang BitBlt
To achieve self-simulation capability and platform independence, 
the Squeak system implements BitBlt in a subset of Smalltalk 
[22]. This code can either be run as is, which is highly useful 
during development but far too slow for real-time graphics, or it 
can be translated into C, from which highly efficient machine 
code may be generated. The need for speed naturally places tight 
constraints on the implementation. This applies in particular to the 
most speed-sensitive inner loop that performs the actual pixel 
transfer. In contrast to normal Smalltalk code, which typically 
comes as a number of small, well-factored high-level methods for 
maximum clarity, the inner loop is hand-optimized to maximize 
its speed and therefore looks much the opposite.
performance implementation-bound -> give up structuring
This BitBlt inner loop is a large monolithic method, over a 
hundred lines long, and with several highly similar chunks of 
code repeated with subtle variations. It could in other words 
easily be refactored, to yield a much better organized but also 
slower version. Moreover, several variants of this inner loop are 
provided, which exploit various special conditions to make some 
important cases as fast as possible. A mere glance shows that 
there are great similarities also between these variants. They 
differ merely in the optimizations, which have typically been 
applied by hand; any non-optimization differences could only be 
counted as oversights. In all, it is evident how the concessions 
that have been made to achieve maximum performance come at 
the expense of most everything we consider good programming 
practice, and this trade-off would not turn out more favorably if 
coding directly in C, or even assembly language. It has often been 
said that object-oriented design is not suitable for certain 
applications, since it prevents an reasonable implementation, for 
example because it limits performance. BitBlt may be the ultimate 
illustration of this point.

4.6.1. A functionally decomposed BitBlt
structuring IL with UC
It seems appropriate to have the architecture follow the high-level 
description of the BitBlt operation, as a general pixel-by-pixel 
transformation that takes the source and destination pixel maps as 
its inputs, and the destination as output. From this, the source and 
destination may be defined as PixelMaps (figure 9a). As a result, 
many aspects of the algorithm can be expressed as properties of 
the pixels: this includes the pixel sizes in bits, and whether they 
are indexed or direct colors, a possible RGB(A) format of the 
color, and so on.

Also, much of the low-level processing can be encapsulated as 
higher-level operations on the pixel maps, thereby hiding dozens 
of parameters like the respective width and height of the pixel 
maps, and much internal state that is kept track of during the 
operation, like positions of the current pixel in each map. This is 
an example of how functional parts can be effectively used to 
encapsulate state.

A PixelTransform can be used to organize the remaining aspects 
of the computation: besides the transfer function, various 
auxiliary operations like pixel alignment, halftoning, and others 
(figure 9b). To handle pixel alignment, bit rotation and masking 
can be encapsulated in a Skew part. 

Pixel
Source

BitBlt
Operation

Pixel
Transform

PixelMap

Pixel
Destination

PixelMap

Pixel
Transform

Skew Halftone Transfer
Function

Figure 9. Schematic of the composition of BitBlt. (a) The 
overall operation is a transformation that applies a transfer 
function to a source and a destination pixel map. (b) The 
transfer computation involves additional steps to the transfer 
function itself.

This description of the BitBlt composition has intentionally been 
kept brief and undetailed, so as not to distract from the main point 
of this example, which is that a highly structured implementation 
need not incur any performance loss. However, the description 
ought to have shown that the resulting composition closely 
matches a high-level explanation of how the operation works.

4.6.2. The resulting code
By using this design, the resulting source code for the general 
(non-inlined) inner loop is straightforward to understand and like 
regular Smalltalk approaches the level of pseudo-code. It looks 
roughly like this:

copyLoop

self setupVerticalLoop.
1 to: sourceMap height do:  [:line | 

self prepareLine: line.
self resultPixel: self transformedPixel 

 edge: skew leftEdge.
self nWords > 1 ifTrue: [

self copyHorizontalLine.
self resultPixel: self transformedPixel 

edge: skew rightEdge].
self nextLine]

In this version, the pixel transformation is expressed directly in its 
general, most high-level form:

transformedPixel

^transferFunction 
source: source pixelValue 
destination: destination pixelValue

Spelled out, this means “return the result of applying the transfer 
function to the source and destination pixels”. In Squeak’s hand-
written version the code for the same operation looks as follows:



…
thisWord _ self srcLongAt: sourceIndex. "pick up next 
word"
sourceIndex _ sourceIndex + hInc.
skewWord _ 

((prevWord bitAnd: notSkewMask) bitShift: unskew)
bitOr:  "32-bit rotate"

((thisWord bitAnd: skewMask) bitShift: skew).
prevWord _ thisWord.
mergeWord _ 

self mergeFn: (skewWord bitAnd: halftoneWord)
with: (self dstLongAt: destIndex).

self dstLongAt: destIndex put: mergeWord.  “write  result”
destIndex _ destIndex + hInc
…

The code that results from applying specialization to the high-
level version is identical to the code shown here, except that 
intermediate variables are used only when necessary. A first 
version was written to mimic the hand-written code exactly, but 
the later version captures the intention behind the code much 
more directly, by specifying what should be computed without 
saying how to do it (i.e. whether to use intermediate assignments). 
It relies on the ability of the specialization engine to insert local 
variables when necessary, i.e. when the result of a computation is 
used more than once.
hand optimizations automatically
And instead of writing alternative versions by hand to optimize 
them for certain conditions, different variants can be generated by 
altering the parameters given to the specializer. Then, whenever 
possible, optimizations are applied automatically during 
specialization. For example, one of the most important special 
cases is when no source bitmap is used (e.g. when simply filling 
the destination with a solid color). To obtain a version of the inner 
loop that is optimized for this case, you merely specify a no-op-
style part as the SourceMap, which generates empty operations 
for every source-related part of the code. The resulting inner loop 
is instruction-by-instruction equivalent to the hand-optimized 
version of the same method.

4.6.3. Optimal performance
Table 1 compares the speed of hand-written and re-engineered 
versions of the BitBlt inner loop, where these have been 
translated into C. A deeper investigation traced the discrepancies 
to the used C compiler’s varying ability to optimize code that 
performs the same computation but with or without explicitly 
assigning intermediate values to local variables.

Table 1. A comparison of benchmark execution times in ms 
(smaller is better) of hand-optimized and mechanically 
specialized high-level versions of BitBlt. Paint and over are 
two common BitBlt transfer functions.
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As the comparison shows, the performance cost of reshaping 

BitBlt as a high-level composition is practically none, even 
compared to a hand-optimized version of this highly speed-
sensitive algorithm. And whereas the hand-written code trades a 
great deal of clarity and conciseness for optimal performance, the 
re-engineered version has been given a high-level architecture that 
lies very close to the most convenient conceptual description of 
the operation. As seen in figure 9b, the functional part responsible 
for the PixelTransform is itself decomposed into successive 
functional steps in a data-flow pattern. This means that this 
version could be extended in a well-structured manner by adding 
additional parts to the PixelTransform, where each new part 
would add one new ability, for example to perform byte-order 
conversion or to exploit special hardware.

5. Related Work
5.1. Software composition
There is already a vast literature on software composition [4, 11], 
where the approaches have had varying degrees of success; it 
would no doubt seem rash to claim to address such a formidable 
problem in the general case. In a nearby case, the problem of 
compositional semantics arose in relation to subject-oriented 
composition rules [34]. The reason why this scheme works 
whereas others do not could be that it carefully separates the 
concern of compositional “syntax” from the concern of 
compositional semantics. It separates the concern of composing 
software elements from the concern of the contents of these 
elements, by taking care to ensure that the contents will not be 
affected by the composition that is performed.

This separation can be illuminated by how program specialization 
works, because it too carefully avoids the issue of program 
semantics, by taking care not to perform any transformation that 
may change the semantics of the program. It will for example 
transform 3 + 2 into 5 because the semantics of this computation 
will not be affected by whether it is performed at runtime or ahead 
of runtime. Thereby the semantic correctness of a transformed 
program is left unaffected, and will only depend on the 
correctness of what the programmer has written. In fact, program 
specialization has been used in the present scheme precisely 
because it has this property: It can therefore be used to compose 
behavior without affecting the semantics of the composed 
elements.

That is, the present approach has not solved the problem of 
compositional semantics. On the contrary, by recognizing that 
composition is a purely structural concept, this scheme can 
address that specific problem in the general case, by taking care to 
circumvent the problem of compositional semantics.  

5.2. Inheritance
Various problems related to method lookup in multiple 
inheritance (MI) have been well documented [9, 14, 37]. The way 
in which the present scheme resolves these problems is highly 
similar to the one described in [9]. However, since that approach 
is based on inheritance, the definition of a point of view becomes 
complex and non-intuitive. Here there is no need for introducing a 
special construct for this purpose, instead functional parts (and 
perspectives) already handle this problem. In fact, if the examples 
from [9] are recast as composition graphs, the results resemble 
perspectives very closely, with the infamous “multiple inheritance 
diamond” corresponding to multiple perspectives cross-
referencing the same part or parts.

The ability to form general DAGs is neither unique nor new; MI 
has always had this ability. The critical difference indeed appears 



to be that inheritance always enforces de-encapsulation, cf. above 
and [37]. The present scheme fully exploits this fact by eschewing 
inheritance for composition. It builds new entities out of 
functional parts with precisely carved abilities, instead of deriving 
new entities from other complete entities, in an all-or-nothing 
fashion (i.e. deriving new classes from other fully capable 
classes). This difference, composition from small, precise parts 
instead of derivation from large, fully capable entities indeed 
seems to be the crucial factor that makes a great difference.

In this, there is a distinct similarity between functional parts and 
mixins [8]. However, in comparison to the gradual and rather ad 
hoc evolution (and divergence) of inheritance into MI, mixins, 
points of view, and so forth, it should be clear that the present 
composition scheme results from a clean-sheet design and so rests 
on a conceptually simple and clear foundation. On this point, the 
present scheme stands in contrast to Self, which held on the 
notion of inheritance, resulting in an odd mix of concepts from 
inheritance and composition, as in “parents are shared parts of 
objects”, “traits objects”, and so on [10].

5.3. Aspect-oriented programming
Relation to “aspect weaving”
Aspect weaving corresponds to a special form of behavior 
composition, as discussed above. Aspect weaving is usually 
considered to be performed ahead of runtime, even though 
nothing prevents it from being performed dynamically, at 
runtime; the use of program specialization for this purpose was 
discussed above. And even though it addresses a less general 
problem, the resulting solution introduces more additional 
complexity into the base language than has been done here. The 
simplicity obtained here is due to the general but conceptually 
simple design of the composition mechanism, which draws on the 
existing mechanism for composing behavior, namely message 
passing, and this is all the machinery needed for the general case. 

Composition methods were introduced as a means for allowing 
the same composition pattern to be used for several methods in 
the same part. In contrast, AspectJ introduces three types of 
construct, join points, pointcut designators, and advice 
declarations [27]. Each of the latter categories have multiple 
members, which in relation to existing language constructs range 
from the familiar to the quite unfamiliar. Thus, the concepts 
introduced by the present scheme are far fewer and less foreign to 
the base language than those introduced by AspectJ. The main 
reason for these differences is that AspectJ is specifically tailored 
for one new category of software composition, namely aspectual 
composition. Such a specialized scheme would not work here, as 
the present scheme needs to work for program composition in 
general.

Like multiple inheritance, also AOP schemes have the theoretical 
capacity to describe general DAGs. For example, hyperspaces 
[39] provide this capability. However, beside the fact that HyperJ 
much like AspectJ introduces a substantial amount of new 
language machinery, it also requires the full composition graphs 
to be specified from top to bottom, as it were, using absolute 
references. To obtain good encapsulation, it is essential that the 
composition scheme allows cross-references to be both 
encapsulated and relative. For example, the compositions of 30+ 
and even 70+ parts mentioned above were all generated from one 
single top-level rule each, with the equivalent of five parameters 
whose values cascade into other parameterized rules, to a total of 
thirty or seventy nodes. Thus, relative and encapsulated 
composition rules are essential to allow the compositions to scale 
in a controlled manner.

6. Conclusions
This paper has sought to show that the aim of achieving 
compositional completeness, i.e. the ability to decompose any 
given system in any manner that is theoretically possible, is not as 
hard to reach as intuition would suggest: Any composition can be 
described by a directed acyclic graph, and any such graph can be 
fully untangled by decomposing it into multiple “perspectives”, 
each of which is an ordinary non-tangled tree. In this manner, any 
system can be described in a structured and manageable way. 

This work was originally inspired by the sheer multiplicity of 
approaches to inheritance and aspect-oriented programming, and a 
feeling that they all had some shared core. Compositional 
completeness is that core. A scheme that has this property is also 
the superset of all other software composition schemes, for 
example any variants of inheritance and aspect-oriented 
programming. Therefore a language based on this core would be 
smaller, yet substantially more expressive and powerful than 
current languages.

Moreover, this paper has tried to show by example that the 
practical application of this scheme leads to designs and 
implementations that are both problem-oriented and highly 
structured. The scheme brings the freedom to structure a system in 
any possible way, and I have proposed that this freedom is best 
utilized by decomposing problems in terms of function or 
purpose, in a manner that corresponds to role-based design. The 
concluding BitBlt example showed that this approach can be 
applied even to highly performance-critical applications, and then 
without incurring any efficiency loss, even when compared to 
hand-crafted, optimized C code. My intention has been to show 
that this scheme is not merely a theoretical construct, but that it 
also works well when put into practice.
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