
T e c h n i c a l R e p o r t N o : 2 0 0 3 / 0 9

Problem Frames for Socio-technical Systems

Jon G. Hall
Lucia Rapanotti

15th October 2003

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

l

Problem Frames for Socio-technical Systems

Jon G. Hall Lucia Rapanotti
Computing Department, The Open University
Walton Hall, Milton Keynes, MK7 6AA, UK

{J.G.Hall, L.Rapanotti }@open.ac.uk

1 Introduction

By socio-technical system we mean a collection of interacting components in which
some of the components are people and some are technological. In this chapter, we
focus on the requirements analysis of socio-technical systems in which some of the
technological subsystems are computer-based, these systems forming the largest
part of modern software design problems.

More precisely, there are two (not necessarily disjoint) sub-classes of socio-
technical systems that we will treat in this chapter. The first sub-class contains
those systems in which existing components or sub-systems (i.e., domains) are to
be allowed, through software, to interact. An example from this first class might be
the problem of designing software for the operator of heavy machinery. The larger,
second class, contains those systems for which software, a user interface, and user
instruction is to be designed to enable a new process or service. An example of this
second class might be the development of a new customer call centre.

The use of Problem Frames (PFs) underpins our requirements analysis process.
As described in [8], PFs are a concretisation of the ideas of Michael Jackson and
others in the separation of machine and its environment’s descriptions. This sepa-
ration is generally accepted as being a useful principle for requirements analysis1.
The usual representation of the separation of machine and environment descrip-
tions is as the ‘two ellipse’ model, illustrated in Figure 1. In that figure world
knowledgeW is a description of the relevant environment;R is the statement of
requirements;S is the specification that mediates between environment and ma-
chine;M is the description of the machine; andP is the program that, on machine

1We will have cause, later in the chapter, in dealing with a more general class of socio-technical
problems to further detail this separation, but nothing we do compromises its fundamental status.

M, implements the specificationS. The role ofW is to bridge the gap between
specificationSand requirementsR. More formally[14, 4, 5]:

W, S` R

W R S P M

Figure 1: The requirements analysis model

One of the aims of the PF framework is to identify basic classes of problems
that recur throughout software development. Each such class should be captured
by aproblem framethat provides a characterisation for the problem class. Socio-
technical systems are an important class of problems, and so should be repre-
sentable within the PF framework, possibly with their own (collection of) problem
frame(s).

In a fundamental sense, of course, the PF framework already deals with socio-
technical systems: problem frames are an attempt to allow customer and developer
to come together to match real-world problem and technological solution. There
are many examples in [10] as to how this relationship can be facilitated using prob-
lem frames.

We observe, however, that the application of problem frames to particular
socio-technical problems remains under-explored. Currently, some discussion of
HCI appears in [10], and some analysis appears in [8], but otherwise, there is little
in-depth coverage of how to apply problem frames in this context. In this chapter
we show, in some detail, how problem frames can be applied to socio-technical
systems.

Our development is threefold. We first show how the problem of representing
interaction with (and not just control of) technology can be represented within the
PF framework. To do this we introduce two new basic problem frames, theUser
Interaction Frameand theUser Commanded Behaviour Frame, each dealing with
the class of user-interaction problems.

Secondly, we show how architectural artefacts can be used to guide the anal-
ysis of socio-technical problems. To do this we discuss the notion of an AFrame,
a new PF artefact that can be used to guide problem decomposition in the light

2

of particular solution expertise as might, for instance, exist in a software develop-
ment company. As an exemplar of AFrames and their use, we define and apply an
AFrame corresponding the MVC architectural style [1].

Lastly, we adapt the PF framework to meet the needs of representing the prob-
lems of more complex socio-technical systems, including those in which, as well
as user-machine interaction, user training needs to be addressed. This causes us to
consider a reification of the two ellipse model into three ellipses, to represent ma-
chine, environment, and user descriptions. Consequently, by interpreting this third
ellipse in the PF framework, we discover a new type of PF domain – the knowledge
domain – to represent a user’s knowledge and their ‘instruction’ needs, and argue
that this leads to a more general PF framework for socio-technical systems.

1.1 Chapter Overview

In the major part of this chapter, we will use the well-known chemical reactor
problem [2, 11], as an example for illustration of techniques. Later we briefly
describe the design of a ‘cold-calling’ system. The chemical reactor is a socio-
technical system, and is representative of the class of operator controlled safety-
(and mission-)critical systems. A schematic for the chemical reactor hardware
appears in Figure 2.

Reactor

Cooling
water

Gearbox

Catalyst

Computer

Condenser

Figure 2: The chemical reactor schematic (adapted from [2])

A statement of the problem is as follows.

A computer system is required to control the safe and efficient op-
eration of the catalyst unit and cooling system of a chemical reactor.
The system should allow an operator to issue commands for activat-
ing or deactivating the catalyst unit, and to monitor outputs. Based on
the operator’s commands, the system should instruct the unit accord-
ingly and regulate the flow of cooling water. Attached to the system

3

is a gearbox: whenever the oil level in the gearbox is low, the system
should alert the operator and halt execution.

The chapter is organized as follows. Section 2 develops the problem frame
representation of the chemical reactor problem, and uses this to recall the basis of
problem representation in the PF framework. Section 3 provides a small taxonomy
of problem classes including those of relevance to socio-technical systems. Sec-
tion 4 addresses problem decomposition, both in the classical PF framework, and
through AFrames. Section 5 details our separation into three of the various domain
descriptions, and uses this to motivate a new type of PF domain, the knowledge
domain. Section 6 concludes the chapter.

2 Problem representation

We first consider the PF representation of the chemical reactor problem. Within the
PF framework, problems are represented throughproblem diagrams. A problem
diagram defines the shape of a problem: it records the characteristic descriptions
and interconnections of the parts (ordomains) of the world the problem affects; it
places the requirements in proper relationship to the problem components; it allows
a record of concerns and difficulties that may arise in finding its solution.

For the chemical reactor, there are a number of domains, including those that
appear in the schematic of Figure 3. Also the operator will play an important
role, in issuing commands to control the catalyst and cooling systems. Placing all
of these domains in their correct relationship one to another leads to the problem
diagram shown in Figure 3.

The components are:

• Operation machine: the machine domain, i.e., the software system and its
underlying hardware. The focus of the problem is to build the Operation
machine.

• Other boxes (Cooling System, Catalyst, etc.): given domainsrepresenting
parts of the world that are relevant to the problem.

• Shared phenomena: the ways that domains communicate. These can include
events, entities, operations and state information. In Figure 3, for example,
the connection between theOperation machineand theCooling Systemis an-
notated by a sete, containing the eventsincreasewateranddecreasewater,
and a setf, containing the phenomenonwater level. Phenomena ine are
controlled by theOperation machine; this is indicated by an abbreviation of

4

ReactorCatalyst

Operator

OM!c
CA!d

OM!e
CS!f

OM!bOP!a

GearBox

G
B

!g

Safe and
efficient

operation

d

a,b

g

 Operation
machine

Cooling
System

f

a : {opencatalyst, closecatalyst} e : {increasewater, decreasewater}
b : {catalyst status, water level} f : {water level}

c : {opencatalyst, closecatalyst} g : {oil level}
d : {is open, is closed}

Figure 3: The chemical reactor problem diagram

the domain name followed by!, i.e.,OM!. Similarly, the phenomenon inf is
controlled by theCooling System, indicated by theCS!.

• The dotted ovalSafe and efficient operation: the requirement, i.e., what has
to be true of the world for the (operation) machine to be a solution to the
problem.

• In the connections between the requirement and the domains, a dotted line
indicates that the phenomena arereferencedby (i.e., an object of) the re-
quirement, while a dotted arrow indicates that the phenomena arerequired
(i.e., a subject for the requirement). In Figure 3, for instance, the oil level in
the gear box is referenced, while the cooling system’s water level is required.

• Phenomena at the requirement interface (e.g., those of setsf or d) can be,
and usually are, distinct from those at the machine domain interface (e.g.,
those of setsc ande). The former are calledrequirement phenomena; the
latter,specification phenomena. The intuition behind this distinction is that
the requirement is expressed in terms of elements of the problem, while the

5

specification(that is what describes a machine domain) is expressed in terms
of elements of the solution.

Other artifacts which are not represented on the problem diagram, but are re-
lated to it aredomain and requirement descriptions. Such descriptions are essential
to the analysis of a problem, and address relevant characteristics and behaviours of
all given domains, the machine domain and the requirement.

An important distinction in the PF framework is that of separating two types
of descriptions:indicativeandoptative. Indicative descriptions are those which
describe how things are; optative descriptions describe how things should be. In
this sense, in a problem diagram, given domain descriptions are indicative, while
requirement and machine descriptions are optative. In other words, things that
have to do with the problem domain are given, while things that have to do with
the solution domain can be chosen. For instance, in the chemical reaction prob-
lem indicative descriptions of theCatalyst, Cooling SystemandGear Boxshould
include characteristics of the domains which are of interest in the specification of
the machine, say, the mechanics of opening the catalyst, or of changing the water
level in the cooling system, or the oil level in the gear box. On the other hand, the
requirement should express some constraints on the status and operations of those
domains which, when satisfied, result in their safe and efficient operation. Indeed,
it is our intent to build a machine so that they are satisfied at all time. Finally,
the machine specification should describe how we would like the control system to
behave and interact with the given domains so that the requirements are met.

Indeed not all domains share the same characteristics. There is a clear differ-
ence between a cooling system and an operator. In a cooling system there exist
some predictable causal relationships among its phenomena. For instance, it could
be described as a state machine, with a set of clearly identified states and predicable
transitions between them. A domain with such characteristics is known as acausal
domain. On the other hand, an operator’s phenomena lack such predictable causal
relationships. We can describe the actions an operator should be allowed to do, but
can not guarantee that they will be executed in any particular order, or not at all, or
that some other (unpredicted) actions will not be executed instead. A domain with
such characteristics is known asbiddable.

The distinction between causal and biddable domains is an important one, as it
has ramifications for the type of descriptions we can provide, and the assumptions
we can make in discharging proof obligations during the analysis of a problem, as
we will see in the following sections.

Of course, there exist other types of domain, each with its own characteristics.
An exhaustive domain classification is beyond the scope of this chapter but can be
found in, e.g., [10, 8, 6].

6

3 Problem Classification

One of the intentions of the PF framework is to classify problems. An initial prob-
lem classification is given in [10]. Therein are identified fivebasicproblem frames.
They are basic because they represent relatively simple, recurrent problems in soft-
ware development. In describing the basis of problem frames, it is not the intention
of that work to be exhaustive in its classification of problems. Indeed, there are
other frames by Jackson [8] which do not make it into that classification.

In this section, we present a simple taxonomic development, beginning with
the simplest of all problem frames, and adding domain types (modulo topology).
As each type has different characteristics, the resulting problem frames represent
different classes of problems. In doing so, we introduce a new basic problem frame,
the User Interaction Frame, which is novel in the problem class it represents within
the PF framework (but not, of course, within software engineering). The taxonomy
is summarised in Figure 4.

General
programming

problem

User
interaction

Required
behaviour

ca
usa

l
biddable

User
commanded
behaviour

ca
usal

biddable

Figure 4: Simple problem frame taxonomy: adding domain types

3.1 Programs

The simplest form of problem representable in problem frames is that of producing
a program from a given specification. This is illustrated in Figure 5. Although this
is a sub-problem of all software engineering problems, it is not a very interesting
problem class to be analysed using PFs: nothing exists outside the machine. Other
techniques, such as JSD [7] or design patterns [3], are probably more appropriate
to tackle this problem class. Indeed, the PF framework does not include a problem

7

frame for this class of problems.

Program
specification

Program

Figure 5: Writing programs

3.2 Embedded controllers

For a problem class to be purposefully analysed in PFs, some given domain(s) of
interest must exist outside the machine. An interesting problem class is identified
in [10] by introducing just one single causal domain. The problem frame is known
as theRequired Behaviour Frame, and its characterising problem is that of building
a machine that controls the behavior of some part of the physical world, so that it
satisfies certain conditions. Some software engineers may find it easy to identify
this problem with that of building an embedded controller (although it does apply
also to more general software problems).

The Required Behaviour Frame is illustrated in Figure 6. The frame has a
topology, which is captured by aframe diagram(that of the illustration).

Controlled
domain

C

CM!C1
CD!C2

Required
behaviour

C3Control
machine

Figure 6: Required Behaviour Frame

The frame diagram resembles a problem diagram, but it also includes some
further annotation. This provides an indication of the characteristics of the domains
and phenomena involved in problems of the class. For the Required Behaviour
Frame:

• TheControlled domainis causal (the C annotation in the figure). Its phenom-
ena are also causal (indicated by C on the arcs) - they are directly caused or
controlled by a domain and may cause other phenomena in turn.

• TheControl machinehas access to causal phenomena of theControlled do-
main (in C2) and controls another set of phenomena which are also shared
with theControlled domain(in C1). Intuitively, phenomena inC1 are used

8

by the machine to control the domain, while phenomena inC2 to obtain
information and feedback on the functioning and state of the domain.

• The requirement,Required behaviour, is expressed in terms of a set (C3) of
causal phenomena of theControlled domain.

When a problem of a particular class is identified, it can be analysed though
the instantiation of the corresponding frame diagram. The instantiation is a process
of matching problem’s and frame’s domains and their types, as well as problem’s
and frame’s phenomena types. The result of the instantiation is a problem dia-
gram, which has the same topology of the frame diagram, but with domains and
phenomena grounded in the particular problem.

Let us return to the chemical reactor problem and consider the problem of
regulating the water level in isolation. This can be regarded as a required behaviour
problem (see Figure 7) with some safety requirement on the water level.

Cooling
system

CM!e
CS!f

Safe water
level

fControl
machine

e : {increasewater, decreasewater}
f : {water level}

Figure 7: Regulating the water level in the cooling system as a required behaviour
problem

For a problem to be fully analysed, the instantiation of a problem frame is only
the first step of the process. Suitable domain and requirement descriptions (see
Section2) need to be provided and the frame concern needs to be addressed. The
frame concern is an overall correctness argument, common to all the problems of
the class. It is the argument that must convince you, and your customer, that the
specified machine will produce the required behaviour once combined with the
properties of the given domains. Each problem frame comes with a particular con-
cern, whose structure depends on the nature of the class problem. For the Required
Behaviour Frame, the argument is outlined in Figure 8.

3.3 User Interaction

Another interesting class of problems can be obtained by including a single bid-
dable domain outside the machine, which represents the user of the system. We

9

Controlled
domain

C

Required
behaviour

Control
machine

1
(specification) 3

(requirement)
2
(domain properties)

1 We will build a machine that behaves like this, so that...

2 knowing that the controlled domain works like this...

3 we can be sure that its behaviour will be this.

Figure 8: Frame concern for the Required Behaviour Frame

call the resulting problem frame theUser Interaction Frame, and its characterising
problem is that of building a machine, which enforces some rule-based interac-
tion with the user. The frame diagram for the User Interaction Frame is given in
Figure 9.

User
B

IM!Y1
U!C1

Interactive
behaviour

C1,Y1Interaction
machine

Figure 9: User Interaction Frame

The Interaction machineis the machine to be built. TheUser is a biddable
domain representing the user who wants to interact with the machine. The require-
ment gives the rules which establish legal user/machine interactions.

The manifestation of the user/machine interaction is though exchanges of causal
phenomena (inC1) controlled by the user and symbolic phenomena (inY1) con-
trolled by the machine. Intuitively, the user issues commands inC1 and the ma-
chine provides feedback throughY1. The interaction rules specify the legal corre-
spondence of user and machine phenomena.

In the chemical reactor problem, we can isolate the operator/machine interac-
tion as a user interaction problem as illustrated in Figure 10, where the require-
ment establishes some rules on the relationship between operator’s commands and
system feedback, say, that aopencatalystcommand cannot be issued when the
water level value is below a set threshold. Note that this would be the perspec-
tive of a UI designer, whose main concern is the user interacting with a black box
system. Indeed, in the wider problem analysis of the chemical reactor problem,

10

machine responses to user commands depend on a faithful representation of the
internal state of, say, the catalyst or the cooling system.

OperatorIM!b
OP!a

Rules of
interaction

a,bInteraction
machine

a : {opencatalyst, closecatalyst}
b : {catalyst status, water level}

Figure 10: Operator/system interaction as an instance of the User Interaction Frame

Figure 11 illustrates the frame concern for the User Interaction Frame.

User
B

Interactive
behaviour

Interaction
machine

1.
(requirement)

2.
(specification)

4.
(requirement)

3.
(specification)

1 Given this set of machine phenomena, when the user causes this phenom-
ena (it may or may not be sensible or viable)...

2 if sensible or viable the machine will accept it...

3 resulting in this set of machine phenomena...

4 thus achieving the required interaction in every case.

Figure 11: Frame concern for the User Interaction Frame

3.4 User Commanded Behaviour

The Required Behaviour and the User Interaction Frames are representative of rel-
atively simple problems, albeit oft-recurring in software development. It is possi-
ble, and indeed likely, that other interesting problem classes could be identified by
considering single given domains of some other type (see discussion at the end of
Section 2). However, we do not pursue this any further here. We look, instead, at
what happens when there are two given domains outside the machine.

11

As for the single domain case, other interesting classes of problems emerge.
In fact, the remaining four basic problem frames introduced in [10] are all of this
form.

If we add a biddable domain to the Requirement Behaviour Frame we obtain a
User Commanded Behaviour Frame, which is illustrated in Figure 12. Its charac-
terising problem is that of building a machine that will accept the user’s commands,
impose control on some part of the physical world accordingly, and provide suit-
able feedback to the user2.

Controlled
domain

C
OM!C2

CD!C3
Required
behaviour

and feedback

C4

Operation
machine

User
B

OM!Y1US!C1
C1,Y1

Figure 12: User Commanded Behaviour Frame

In the chemical reactor problem, we can apply the User Commanded Behaviour
Frame to analyse how the catalyst is controlled by the operator. The corresponding
problem diagram is given in Figure 13.

A possible description of the interaction rules, could be as follows. The ma-
chine shall allow the user to control the catalyst under the following constraints:

1. catalyst statusis a faithful representation of the state of the catalyst

2. the initial state of the catalyst iscatalyst closed

3. possible user commands areopencatalystor closecatalyst

4. state transitions are represented in Figure 14.

The frame concern for the User Commanded Behaviour Frame is given in Fig-
ure 15. From the figure you will notice that the argument has two parts: satisfying
the required behaviour of the domain (from 1 to 4); and providing suitable feedback
to the user (5 and 6).

2[10] introduces a subclass of this frame, the Commanded Behaviour Frame, which does not
require the user to receive any feedback.

12

Catalyst

User

OM!c
CA!d

US!a
OM!b

Safe Catalyst
operation

d

a,b

 Operation
Machine

a : {opencatalyst, closecatalyst}
b : {catalyst status}
c : {opencatalyst, closecatalyst}
d : {is open, is closed}

Figure 13: Controlling the catalyst as an instance of a user commanded behaviour
problem

catalyst_opencatalyst_closed

open_catalyst

close_catalyst[catalyst_closed]

[catalyst_open]

waiting_open

waiting_closed

Figure 14: State machine model for the catalyst

4 Problem Decomposition

Most real problems are too complex to fit basic problem frames. They require,
rather, the structuring of the problem as a collection of (interacting) sub-problems.
In this section, we discuss two ways of decomposing problems within the PF frame-
work. The first, classical decomposition, proceeds through sub-problem identifi-
cation and problem frame instantiation. The second, our novel approach, com-
bines sub-problem identification with guided architectural decomposition using
AFrames.

13

Controlled
domain

C

Required
behaviour

and feedback

Operation
machine

User
B 6.

(requirement)

2.
(specification)

4.
(requirement)

3.
(domain

properties)

5.
(specification)

1.
(requirement)

1 Given a choice of commands in the current state, when the user issues this
command (it may or may not be sensible)..

2 if sensible or viable the machine will cause these events...

3 resulting in this state or behaviour...

4 which satisfies the requirement...

5 and which the machine will relate to the user...

6 thus satisfying the requirement in every case.

Figure 15: The frame concern for the User Commanded Behaviour Frame

4.1 Classical decomposition

In classical PF decomposition, a problem is decomposed in simpler constituent
sub-problems which can then be analysed separately. If necessary, each sub-problem
can be decomposed further, and so forth, until only very simple sub-problems re-
main. Decomposition proceeds through the identification of sub-problems that fit
a recognised problem class, and the instantiation of the corresponding problem
frame. We illustrate the process on the chemical reactor problem.

There are three sub-problems:

1. a user commanded behaviour problem, for the operator to control the cata-
lyst;

2. a required behaviour problem, for regulating the water flow in the cooling
system; and

14

3. a sub-problem to issue a warning (and halt the system) when there is an oil
leak in the gearbox.

Addressing sub-problems 1. and 2. means instantiating the corresponding
problem frames to derive problem diagrams for each subproblem. These are de-
picted in Figures 13 and 7, respectively.

The third sub-problem has no standard problem frame to represent it. The
closest fit would be the Information Display Frame ([10]), but this requires a de-
cision on how the alarm will be raised. Here, we have made an arbitrary choice
of introducing aBell domain, and assume that it will ring when the oil level in the
gearbox is below a certain threshold. The resulting sub-problem diagram is shown
in Figure 16.

Bell

AM!h

GearBox

GB!g

Raise Alarm

i

 Alarm
Machine

g

h : {ring bell} i : {bell ringing} g : {oil level}

Figure 16: Raising the alarm as an instance of the information display problem

We already know from the simple taxonomy in Section 3 that the sub-problem
1. can be decomposed further resulting in a required behaviour and a user interac-
tion sub-problem. These are shown in Figure 17.

4.2 AFrames

AFrame decomposition complements classical decomposition in providing guid-
ance and decomposition rules. The rational behind AFrames is the recognition that
solution structures can be usefully employed to inform problem analysis.

AFrames characterise the combination of a problem class and an architectural
class. An AFrame should be regarded as a problem frame for which a ‘standard’
sub-problem decomposition (that implied by an architecture or architectural style)
exists. AFrames are a practical tool for sub-problem decomposition that allow
the PF practitioner to separate and address, in a systematic fashion, the concerns

15

Catalyst
behaviour

 Control
 machine

CatalystCA!d
CM!c

d

UserUS!a
IM!b

User
interactiion

a,bInteraction
machine

c : {opencatalyst, closecatalyst} a : {opencatalyst, closecatalyst}
d : {is open, is closed} b : {catalyst status}

Figure 17: Further decomposition of the user Commanded Behaviour sub-problem

arising from the intertwining of problems and solutions, as has been observed to
take place in industrial software development [12]. Further motivation for, and
other examples of, AFrames can be found in [13].

Here we introduce the MVC AFrame as applied to the User Commanded Be-
haviour Frame. This represents the class of user commanded behaviour problems
for which an MVC solution [1] is to be provided.

The intention of using the MVC in the solution space is recorded through an an-
notation of the machine as illustrated in Figure 18. Guidance on decomposition is
in the form of decomposition templates, which are applied to obtain sub-problem
diagrams. The decomposition templates for the MVC AFrame are given in Fig-
ure 19. It can be seen from the figure that the original problem is decomposable
into two sub-problems, whose machine domains are the View and Controller ma-
chines (in the MVC sense). Also, a Model domain is introduced which represents
an abstraction of the real-world domain to be controlled. This is a designed domain
[10], i.e., one that we have the freedom to design, as it will reside inside the solution
machine. The resulting sub-problems are then: that of building a View machine to
display the Model’s representation of the state of the controlled domain; and that
of building a Controller machine that acts on the Model, which will pass on the
commands to the controlled domain. In PF terms, the Model acts as aconnection
domainbetween the real-world domain and presentation and control subsystems.

16

Controlled
domain

C
OM!C2

CD!C3
Required
behaviour

and feedback

C4

Operation
machine

User
B

OM!Y1US!C1
C1,Y1MVC

Figure 18: MVC annotation of the User Commanded Behaviour Frame

User
B

US!C1

Required
behaviour

C1

Controller

Model Controlled
domain

C

MO!C
3

CO!C
2 C4

User
B

VI!Y3

Feedback

Y2

View

Model

MO!Y2 Y1

CD!C4

Controlled
domain

C

CD!Y1

Figure 19: Decomposition templates for the MVC AFrame

The application of the MVC AFrame to the sub-problem of controlling the
catalyst (see Figure 13) results in the decomposition of Figure 20.

We see at least two strengths of AFrames. The first is that they suggest how a
problem would need to be restructured for a particular solution form. For instance,
in the MVC case, that an abstract model of the catalyst needs to be produced (or, for
that matter, a connection domain between Operator and Gearbox– aBell – would
be needed).

The second is that they help the recomposition of sub-problem solutions into
the original problem. Recomposition is facilitated by the fact that AFrame de-
composition is regularized through the application of the AFrame templates. For
the MVC, this is through the identification of the links among its architectural ele-
ments. The recomposition diagram for the MVC AFrame is illustrated in Figure 21,
and its frame concern in Figure 22.

17

User
US!a

Catalyst
behaviour

a

 Controller

Model Catalyst

MO!d

CO!c
e

User
VI!b

Feedback

b

View

Model

MO!d e

CA!e

Catalyst
CA!e

b : {catalyst status} a : {opencatalyst, closecatalyst}
d : {is open, is closed} c : {opencatalyst, closecatalyst}
e : {open, closed}

Figure 20: MVC decomposition of the user commanded behaviour sub-problem

US!C1
Controller User

B

VI!Y1

View

MO!C6C
O

!C
5

Required
behaviour

and feedback

C4

C1,Y1

Controlled
domain

C

MO!C2
CD!C3

Model

Figure 21: MVC recomposition

18

Controller User
B

View

Required
behaviour

and feedback

Controlled
domain

C
Model

6.
(requirement)

4.
(requirement)

3.
(domain

properties)

5.
(specification) 1.

(requirement)

2.
(specification)

1 Given a choice of commands in the current state, when the user issues this
command (it may or may not be sensible)..

2 if sensible or viable the machine will cause these events...

3 resulting in this state or behaviour...

4 which satisfies the requirement...

5 and which the machine will relate to the user...

6 thus satisfying the requirement in every case.

Figure 22: Discharging the correctness argument in MVC recomposition

5 A Requirements Analysis Model for Socio-Technical Sys-
tems

The consideration of more sophisticated human-machine relationships is our next
concern. To be specific, we now wish to look at users’ behaviour as being the
subject of requirements statements, admitting that users are the source of much
of the flexibility in socio-technical systems, and can compensate for some of the
inability of machines to adapt. In short, we wish to allow the design of human
instruction to be the subject of the requirements engineering process addressed
through problem frames alongside that of the program.

19

Paraphrasing this, we might say that the human, as well as the machine, is to
be the subject of optative descriptions, i.e., that their flexibility will lead to the dis-
charging of the requirements. Foundationally, this means the separation of the de-
scription of the world from that of the human that is the subject of the design. This
leads to the reification of the original ellipse model shown in Figure 23. In it we
have three ellipses – that for the HumanH with knowledgeK, that for the Machine
M with programP, and that for the remaining EnvironmentW with requirementsR.
Of course, just as machines outside the design process have indicative descriptions
in W, so do humans.

I

K

M

W

S

PUI
H

R

Figure 23: The extended requirements analysis model

With the introduction of the humanH, we identify and separate two new areas
of interest, which now form explicit foci for design:

• the specificationUI , anonymous in theSregion in the original model, which
determines the Human-Machine interface; and

• the specificationI , missing from the original model, which determines the
knowledge and behaviour that is expected of the human as a component of
the socio-technical system.

As in the original model the descriptionW has the role of bridging the gaps
between the requirementR and the specificationS, in our extensionW has the
role of bridging the gaps between the requirementR and the instructionI , human-
machine interfaceUI and specificationS together. More precisely we assert that
S, I , UI andW must be sufficient to guarantee that the requirements of the socio-
technical system are satisfied. More formally:

W, S, I , UI ` R

20

5.1 A Problem Frame interpretation

In the PFs framework, the machine domain represents the machine for which the
specificationSmust be designed. By analogy, a new domain type will be required
to represent the human for which the instructionI has to be designed. To this end,
we introduce into the PF Framework the notion of aknowledge domainto represent
that domain. In a problem diagram, a knowledge domain should be represented as
a domain box with double bar on the right-hand side (to distinguish it from the
machine domain).

The most general form of a socio-technical problem, as a problem diagram,
is shown in Figure 24. In the figure, both Knowledge and Machine domains are
subjects of design, as are their shared user interface phenomena.

Machine
domain

User
interface

Knowledge
domain

Socio-
technical

requirement

Required

phenom
ena Re

qu
ire

d
ph

en
om

en
a

Figure 24: The general ‘socio-technical problem’ diagram

An example of how a real-world socio-technical problem could be treated in the
new model is that of designing a ‘cold-calling’ system to allow an interviewee to be
telephoned, and for their responses to certain questions, asked by an interviewer,
to be recorded in a database for future analysis. The problem is to design both
the technical subsystem (the machine domain)and the instructions that guide the
interaction of the interviewer (the knowledge domain) with the interviewee. The
interviewee sits firmly in the environment (as a biddable, indicative domain). The
interaction with the database is a machine task.

The outcome of the design process, in addition to the specification for the tech-
nical subsystem, might be a script for the interviewer, and the human-machine
interface as used by the interviewer. The problem diagram for this example is
outlined in Figure 25.

21

Technical
subsystem

Interviewer

Question ~
Response

DatabaseInterviewee

Figure 25: Outline problem diagram for the cold-calling system

6 Conclusions

In their classical form, problem frames happily represent interactions between a
user and a machine, as might be characteristic of simple socio-technical systems.
In this chapter, we have presented an enrichment of the PF framework to allow
the representation and analysis of more complex socio-technical systems. To do
this we have introduced two new problem frames, the User Interaction and User
Commanded Behaviour Frames. Although not exhaustive in their treatment of
socio-technological interaction problems, we hope that they will provide a sound
basis for a richer taxonomy of user interaction within the PF framework.

One of the, as yet, under-developed areas within the PF framework is the treat-
ment of problem decomposition, in particular, from the perspective of how to do it
in practice. We are currently exploring the development and use of AFrames. An
AFrame offers guidance in problem decomposition on the basis of solution space
structures. In this chapter, we have shown how basic socio-technical interaction
problems can be decomposed when the target architecture is to be the MVC style.

Although both these enrichments are new in the PF framework, they do not
move outside of its original conceptual basis in the two ellipse model of require-
ments analysis. In contrast, we have seen in this chapter that the development of
general socio-technical systems raises challenges for the PF framework. We have
suggested solutions to these challenges in the reification of the two ellipse model
to a three ellipse version, in which social sub-systems – individuals, groups, and
organisations – can also be considered as the focus of the design process. With

22

the introduction of the knowledge domain, the manifestation of this extension in
problem frames, we aim to bring the socio-technical system problems under the
design remit of the PF framework.

7 Acknowledgements

We acknowledge the kind support of our colleagues, especially Michael Jackson
and Bashar Nuseibeh in the Department of Computing, the Open University.

References

[1] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice. SEI
Series in Software Engineering. Addison Wesley, 1998.

[2] O. Dieste and A. Silva. Requirements: Closing the gap between domain
and computing knowledge. InProceedings of SCI2000, Vol. II (Information
Systems Development), 2000.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns. Addison-
Wesley, 1995.

[4] C.A. Gunter, E.L. Gunter, M. Jackson, and P. Zave. A reference model for
requirements and specifications.IEEE Software, 3(17):37–43, 2000.

[5] Jon G. Hall and Lucia Rapanotti. A Reference Model for RequirementsEn-
gineering. 2003/6, Department of Computing, The Open University, 2003.

[6] M. Jackson.Software Requirements & Specifications: a Lexicon of Practice,
Principles, and Prejudices. Addison-Wesley, 1995.

[7] M. Jackson.Principles of Program Design. Academic Press, 1997.

[8] M. A. Jackson. Problem analysis using small problem frames.South African
Computer Journal 22; Special Issue on WOFACS98, pages 47–60, 1998.

[9] M. A. Jackson. Some basic tenets of description.Software and Systems
Modeling, 1(1):59, 2002.

[10] Michael Jackson.Problem Frames. Addison-Wesley, 2001.

[11] N. Leveson. Software safety: What, why and how.ACM Computing Surveys,
18(2), 1986.

23

[12] B.A. Nuseibeh. Weaving together requirements and architectures.IEEE
Computer, 34(3):115–117, 2001.

[13] Lucia Rapanotti, Jon G. Hall, Michael Jackson, and Bashar Nuseibeh.
Architecture-driven problem decomposition. Technical Report TR 2003/??,
Computing Department, The Open University, 2003.

[14] Pamela Zave and Michael Jackson. Four dark corners of requirements en-
gineering. ACM Transactions on Software Engineering and Methodology,
6(1):1–30, January 1997.

24

