
T e c h n i c a l R e p o r t N o : 2 0 0 3 / 2 1

Using Aspects to Help Composers

Patrick Hill
Simon Holland
Robin C. Laney

15th December 2003

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

l

Using Aspects to Help Composers

Patrick Hill
The Open University

Walton Hall
Milton Keynes. MK7 6AA

PatrickHill@bcs.org.uk

Simon Holland
The Open University

Walton Hall
Milton Keynes. MK7 6AA

s.holland@open.ac.uk

Robin C. Laney
The Open University

Walton Hall
Milton Keynes. MK7 6AA

r.c.laney@open.ac.uk

ABSTRACT
Current AOP and related research has largely focussed on the
development of technologies that assist software engineering
practitioners in the separation and composition of various
dimensions of concern across a range of software engineering
tasks. In this paper we argue that the principles of AOP might also
be usefully applied in supporting user interaction with software
systems that aim to support multidimensional, non-linear, creative
processes such as music composition. We support our argument
with two concrete examples of AOP approaches applied to a
musical context.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques -
Object-oriented design methods, Aspect-oriented design; D.2.1
[Software Engineering]: Requirements / Specifications -
Methodologies, Separation of Concerns; D.2.3 [Software
Engineering]: Coding Tools and Techniques AspectJTM,
Hyper/JTM; D.3.3 [Programming Languages]: Language
Constructs and Features - Aspects, Hyperspaces; J.5 [Computer
Applications]: Performing Arts - Music

General Terms
Design, Languages, Human Factors.

Keywords
Aspect-oriented programming, music composition.

1. INTRODUCTION
Aspect oriented programming (AOP) and related technologies
such as Multidimensional Separation of Concerns (MDSoC) have
been proposed as methods of managing the re-composition of
separately specified dimensions of concern in computer software.
This approach has been motivated by the observation, dubbed the
‘tyranny of the dominant composition’ [13], that the encapsulation
of concerns through a single decomposition method leads to
crosscutting resulting in tangled and / or scattered implementation
[8].

Current AOP research has focussed on the varied interests of the
software engineering practitioner in managing scattering and
tangling at various levels of interest. Programming language
extensions such as AspectJ [23], and related systems such as
AspectS [7], address crosscutting at the code level by ‘weaving’
together concerns at well defined points, joinpoints, in a programs
execution.

The concept of Hyperspaces and the Hyper/JTM tool [13] address
the composition of software from separately identified concerns,
described in a concern mapping. This composition is performed at
build-time by defining a hypermodule that acts as a ‘recipe’ for
composing program functionality from separately implemented
program code.

Other approaches such as Adaptive Programming [10] and
component systems such as JAsCo [20] address issues in the
separation of structural concerns from functional concerns.

These technologies are aimed at resolving scattering and tangling
of user and developer requirements ‘under the hood’. We believe
that the underlying principles of some of these compositional
techniques and related non-compositional technologies, such as
Visual Separation of Concerns [4] may also be usefully applied at
the end-user level, in systems that support application domains in
which tangling and scattering across multiple dimensions of
concern are present.

This paper focuses on the potential use of aspects and related
technologies in the domain of music composition. Music
composition is a creative process in which separation and
composition of dimensions of concern are important and
pervasive problems. Multidimensional tangling and scattering
exists not only within the structure, representation and
manipulation of musical data, but also in the cognitive processes
of composition.

Although the processes of software engineering and music
composition are clearly different, we believe that there exist
certain parallels and analogies between two. The usability of
musical notation systems, for example, can be assessed in the
same way as the usability of programming languages [3]. We can
draw a broad analogy between the notation that is traditionally
output as part of a composition process, and the set of instructions
executed by a computer as the result of a software engineering
process. In both cases, these outputs are, largely, simply the result
of the composition of higher-level abstractions and multiple
dimensions of concern, and both are broadly ‘performance
instructions’. In the case of a software engineering process, this
transformation is often performed automatically through
compilers and other ‘software build’ tools that leave the source
artefacts intact. However, the musical composer, even with
computer assistance, often has to express high-level musical ideas
in terms of varying degrees of tangled, low-level detail in which
higher-level abstractions are typically poorly represented and
compositional intent is often lost [22]. These issues appear to

mirror those that are addressed in the software domain by aspect
technologies.

In this paper we examine the parallels more closely in order to
gain a detailed idea of how the principles of AOP might be
applied to music composition. We support our argument using
two concrete examples, and note some of the implications of this
approach.

2. SEPARATION AND COMPOSITION OF

CONCERNS IN MUSIC
While many software systems exist that assist in particular
elements and tasks of musical composition, each system
implements its own partial musical ontology that maps to its areas
of interest. For example, it is possible to consider the perceived
musical surface, purely in terms of the principal perceptual
dimensions (PPDs) of pitch, duration, loudness and timbre [11].
Many musical representation systems, including scoring systems
and the ubiquitous Musical Instruments Digital Interface (MIDI)
adopt this particular ontology. By contrast, other approaches to
music representation, such as Balaban’s Structured Music Pieces
[1], consider music in terms of its temporal and structural
relationships, but largely ignore other musical dimensions such as
melody, harmony and orchestration. The related, but more
detailed ADTs of Smaill et al [18] include PPD information with
the hierarchy, while Lerdahl and Jackendoff [9] attempt to
describe music in terms of a formal grammar. However, no
current musical representation completely represents all musical
dimensions at the same time.

It is common experience that music is not merely a random stream
of sound events. Dannenberg suggests that the musical surface
may be considered as the result of the composers weaving
together of a ‘tangled web’ [5] of musical structures and
dimensions. For example, the musical gesture of ‘getting louder’
(crescendo), might be realised by simply instructing the
performers to play louder; increasing the ‘loudness’ dimension.
Another alternative is that the crescendo might be realised by the
gradual introduction of additional instruments or use of higher /
lower pitches. Thus, in this and other ways, the task of
orchestrating a musical work becomes an inseparable from its
composition [15]. In this example, the orchestration becomes
tangled with the general ‘loudness’ dimension and the ‘crescendo’
concern is scattered among the instruments and their individual
loudness dimensions.

In any given musical composition, composers tend to use limited
musical resources and manipulate them in various ways to form a
logical and coherent whole [16]. For example, a composer might
wish to reuse a rhythm introduced in one area of a composition in
a different context somewhere else. Systems whose ontologies do
not permit explicit identification and separation of musical
concerns, such as rhythm, force the composer to work in a
detailed ‘note-list’ fashion, rather than a more natural expression
of intent. Oppenheim [12] argues that it is unreasonable to expect
a composer to work in this way, and the dichotomy between
natural and formal musical expression continues to be one of the
principal issues in computer music composition.

Various authors have written on the subject of exactly how a
composer composes music. Composition does not appear to be a

linear process; rather the composer originates and refines musical
ideas that may then be incorporated into the composition at hand.
In [14], it is suggested that the composition process requires
hierarchic representations and that varying degrees of scattering
and tangling exist both within these representations and within the
cognitive processes of composition. In an illuminating account,
Spiegel [19] describes her own preference for a paper-based
system because of the freedom it offers in moving around between
different hierarchic levels and musical dimensions, filling in
complete or partial ideas, and composing in an iterative fashion.
Speigel also identifies that sometimes the form of a composition
evolves rather than being predetermined from the outset, and that
musical ideas which are formed may be discarded from the
current composition, or reworked into new compositions.

It has also been observed [17][14][19] that composers do not
necessarily fully complete aspects of their compositions (such as
structure, harmony, melody, orchestration etc.) before moving on
to others, but rather move between them. Sloboda [17] argues that
this may be, in part at least, because the composer records only
those aspects that are important, and serve as aides’ memoirs to
help recover the un-notated aspects.

Both Schoenberg[16] and Hindemith[17] subscribe to the view of
a ‘vision’ of an overall composition, wherein the compositional
process reduces to simply filling in the detail of this vision. Other
accounts [17] suggest a more methodical approach. Nonetheless,
an important point that arises is the need to capture the essence of
the composition, across whatever dimensions this ‘essence’ might
exist, for example a formal plan that specifies the overall structure
of the piece, or a melodic line and so forth.

The underlying principles of AOP and MDSoC could be used to
provide a way to ‘meld’ or ‘weave’ together separately described
musical elements that express musical intent and provide support
for an extensible ontology that can operate at any level of
abstraction determined by the composer. This weaving could
result in the automated production of a ‘score’ or other notation,
freeing the composer from the tedium and possible inaccuracies of
transcription. An AOP-based musical creation environment could
enable the composer to work in an iterative and experimental
fashion, defining and extending a musical ontology that suits their
purpose, in ways analogous to those in which AOP and MDSoC
free the software engineer from the “tyranny of the dominant
decomposition” [13].

The remainder of this paper contains two concrete examples that
illustrate some of the ways in which musical dimensions interact,
and how their separation and subsequent re-composition may be
achieved in an AOP/MDSoC fashion. Rather than attempting to
compose new pieces, our approach in this section is to show how
aspects may be used to ‘compose’ existing pieces.

3. EXAMPLE 1: METRICAL AND

GROUPING STRUCTURES
In this example we consider the use of an aspect to weave together
two separate musical dimensions, namely metrical structures and
grouping structures.

3.1 Metrical Structures
Music is experienced in time, and in western music, the time
dimension is typically dictated by a regular pulse or beat.
Generally, short musical sections containing the same number of
beats are grouped together into structures called bars. The
number of beats contained in a bar is dictated by a time signature.

Musically speaking, each beat of a bar is felt to be strong or weak,
depending on the time signature, and this relationship between
strong and weak beats is known as metre. For example, a time
signature of four beats in a bar implies that the first and third beats
are strong, and that the second and fourth beats are weak.
However, this categorisation does not account for the common
experience that many listeners can correctly identify the first beat
of a bar, and do not confuse it with the third. In [9], Lerdahl and
Jackendoff suggest that a metrical hierarchy exists, with the result
that the first beat is stronger than the third, and both are stronger
than the second and fourth. The realisation of strong beats is
termed metrical accent.

3.2 Grouping Structures
In [9], grouping structures are described as hierarchical structures
that group sequences of pitch / duration pairs, such as those that
constitute a melody, according to various grammatical rules. The
detail of the grouping rules is irrelevant to this example. What is
important however is the observation that metrical hierarchies and
grouping structures, while obviously interacting with each other,
are nonetheless, separate dimensions of musical concern. The
authors explicitly guard against an analytical viewpoint that
attributes metrical stress to melodic groupings.

This statement may be considered as being analogous to the
definition of crosscutting in software [8]. However here it is the
metrical and grouping structures that need to be defined separately
but be coordinated, rather than software concerns.

3.3 A Musical Example
As in [9], we use the theme of Mozart’s Symphony No 40 in G
minor. Figure 1 shows the high-level grouping structure of the
theme itself. This structure shows only pitch and duration. There
is no indication of metre, such as time signature or bar-lines;
therefore all notes receive equal stress.

Figure 1

Mozart’s original piece is in 4/4, so metrical stress is applied to
the first and third beats, with beat one being stronger. Mozart
starts the theme on the last beat of the bar (an up-beat or
anacrusis) as shown in Figure 2.
The metrical accent is denoted by > symbols, with denoting
the stronger accent.

Figure 2

However, the separation of the grouping and metrical structures
enables us change the metre at will, without re-specifying the
melodic group.

A simple variation is to start the group on the first beat of the bar
as shown in Figure 3.

Figure 3

Although the notation looks similar, in performance the two
would feel quite different, even though both the grouping
structure and the metrical structure of both examples is identical.
In other words, it is the composition of the two dimensions that
give the music its metrical feel.

Now we can change the metre to, say, that of a 3/4 ‘waltz’, with
metrical stress now applied only to beat one, as shown in Figure 4.

Figure 4

3.4 A Simple Sequencer
Consider a simple musical sequencing system that ‘plays’ the non-
metrical grouping structure, with each note being represented by
its principal perceptual dimensions of pitch, duration, and
loudness. We ignore timbre for the purposes of this example.

One implementation might consist of the following:

• MusicalEvent objects:
MusicalEvent objects encapsulate PPD parameters
(pitch, duration and loudness) and know how to ‘play’
themselves.

• A MusicalSequence object:

The MusicalSequence represents an ordered
sequence of MusicalEvent objects. It is possible to
fetch the next MusicalEvent in the sequence.

• A Clock object:

The Clock object is a simple implementation of an
Observer pattern [6] that supplies periodic clock signals
(ticks) to a registered observer object. In this example,
we use the MIDI standard of 24 clock ticks per beat.

• A MusicSequencer object:
The MusicSequencer object is responsible for
reading the MusicalSequence and starting and
stopping the playing of MusicalEvent objects at
appropriate times.
MusicSequencer registers itself as a Clock
observer; ticks received from the Clock object
therefore control timing.
Since MusicalEvent durations are expressed in
clock ticks, MusicSequencer simply counts the ticks

that elapse once a MusicalEvent has started playing.
When the count equals the MusicalEvent duration,
MusicSequencer asks the current MusicalEvent
to stop playing, and fetches a new MusicalEvent
from the MusicalSequence, resets its tick counter,
and asks the new event to play itself. This cycle
continues until the MusicalSequence has been
completed.

Appendix A shows a JavaTM implementation of this system.

3.5 Metrical Stress using Aspect/JTM

Now we consider adding metrical stress to this simple application.
We will adopt the, admittedly naïve, practice of stressing by
increased loudness. Metrical stress clearly involves two distinct
considerations

1) Determination of metrically strong beats.
2) Modification of the loudness parameter of a

MusicalEvent that coincides with a strong beat.

Let us first consider how we could adapt the current system
without using aspects. An initially attractive approach might be to
use MusicalSequence to add metrical stress for us, by
keeping track of beats as MusicalEvents are added, and
modifying the loudness parameter of those that fall on strong
beats. However, this approach clearly tangles the metrical stress
concern with MusicalSequence’s basic concern. Moreover,
this is a destructive approach, and the MusicalSequence
could not be re-used in a different metrical context. There are a
number of other possible ways of modifying the given objects to
implement metrical stress. However, we believe that any of these
solutions will necessarily involve tangling of basic concerns and /
or scattering of the metrical stress concern throughout the object
model.

Let us now consider an AOP solution. In this solution we shall
introduce an Aspect that is entirely responsible for the
implementation of metrical stress, and requires no modification to
the existing classes.

Firstly, the determination of a metrically strong beat requires the
aspect to be notified of clock ticks, and to count them according to
some time signature. This can be achieved with an advice that is
invoked when the Clock object issues a tick.

Secondly, coincidence of a MusicalEvent with a metrically
strong beat can be achieved with an advice that is invoked around
the playEvent() method of MusicSequencer. The advice
checks to see if the current beat count is metrically strong, and if
so, constructs a copy (clone) of the MusicalEvent, and
modifies its loudness parameter. It then tells the
MusicSequencer that its currently playing event is this new
copy. Thus when the advice proceeds, the modified
MusicalEvent is used to produce the accent, leaving the
original MusicalSequence intact.

The following code fragment shows an aspect that might be used
with the code presented in Appendix A to implement a simple
metrical accent, in real-time.

aspect MetricalAccent {

 // the initial values of tick,
 // and beat set the starting point
 // in the metre.
 private int tick = 0;
 private int beat = 4;
 private static final int
 beatsPerBar = 4;
 private static final int
 ticksInABeat = 24;
 private MusicalEvent evtCopy = null;

 // Static introduction of 'accent'
 // method into MusicalEvent, enables
 // the aspect to modify loudness.

 public void
 MusicalEvent.accent(int multiplier)

 { loudness *= multiplier; }

 // Metrical accent is dependent on
 // the beat-of-the-bar
 // This advice keeps track of the
 // beat-of-the-bar by counting clock
 // ticks against the offset of
 // the initial tick and beat values.

 before():
 call(void Clock.tick()) {
 tick++;
 if(tick > ticksInABeat) {
 tick = 1;
 if(beat < beatsPerBar)
 beat++;
 else
 beat = 1;
 }
 }

 // This advice 'implements' the
 // metrical accent. The advice runs
 // around the call to
 // MusicSequencer.playEvent

 pointcut
 playCut(MusicSequence seq,

MusicalEvent evt) :
 call(void
 MusicSequencer.
 playEvent(MusicalEvent))
 && args(evt) && target(seq);

 void around(MusicSequencer seq,

MusicalEvent evt)
: playCut(seq,evt) {

 evtCopy =
 (MusicalEvent)evt.clone();

 if(1 == beat && 1 == tick)
 evtCopy.accent(3);

 if(3 == beat && 1 == tick)
 evtCopy.accent(2);

 seq.event = evtCopy;
 proceed(seq,evtCopy);

 }
}

4 EXAMPLE 2: MULTIDIMENSIONAL

COMPOSITION
The previous example shows how two crosscutting dimensions,
grouping and metrical, might be ‘woven’ together using aspects.
The example we present here is more complex, and involves
multiple dimensions.

The piece of music that we consider in this example is Widor’s
“Toccata” from his Organ Symphony No 5 [21], a well-known
organ piece. We focus our attention solely on the construction of
the right and left hand parts of just the opening four bars of the
piece, and we have made slight simplifications of the actual piece
in order that the discussion is not overly complicated.

In order to identify some of the dimensions that appear to exist,
we offer the following informal analysis of this short musical
extract. We will explain only as much musical theory as is
required in order to understand the example.

1. Metre
The metre of the piece is 4/2. For the sake of this discussion,
this is metrically equivalent to 4/4, as discussed in section
3.1.

2. Tonal Plan
The western tonal system consists of an octave, being the
frequency space between two pitches at fHz and 2fHz, and its
subdivision into twelve pitch classes. To illustrate this,
Figure 5 shows a complete octave of a piano keyboard.

� ��� � ��� � � ��� � ��� � ��� � �
� ��� � ��� � � ��� � ��� � ��� � �
��
��	
 �

�� �� �� �� �� �� ��
���

	
 �

Figure 5

The distance between consecutive keys is called a semitone,
and a distance of two semitones is called a tone. Sequences
of tone and semitone intervals may be used to traverse a
complete octave, forming a scale. In western tonal music,
two types of scale, major and minor are common. This
example considers only Major scales, formed by the
sequence

 Tone, Tone, Semitone, Tone, Tone, Tone, Semitone.

Thus, as illustrated in Figure 5, the major scale starting on C
consists of

 C D E F G A B

This example uses the major scale starting on F, which
consists of

 F G A Bb C D E

The starting note of a scale is called its tonic, while the fifth
note is called the dominant. The names of other notes of the
scale, or scale degrees, are not relevant to this example.

The tonal plan of the opening bars is two bars in the tonic,
followed by two bars in the dominant major; specifically,
two bars using the notes of the F major scale, followed by
two bars using the notes of the C major scale. The
implementation of the Tonal Plan crosscuts the metre,
because although we have specified each section in terms of
bars, the tonal plan is independent of what a bar actually is.

3. Harmonic Progression
Notes can be played simultaneously forming chords. Western
tonal harmony is based on the concept of the triad. The notes
of the triad consist of successive thirds with a third being
either 3 semitones (minor third) or 4 semitones (major third).

Thus a triad formed on F in F major consists of the notes

F A C

Typically, triads are notated in roman numerals representing
the scale degree of the lowest note (the root). So the F major
triad in F major is chord I, and the C major triad in F major is
V. The notation may be extended to show additional notes.
Thus, the notation I7, indicates a triad formed on the first
degree of the scale, but with an additional note which is a
major 7th above the root.

Thus, in F major, the chord I7 consists of the notes

F A C E

This Roman numeral notation is independent of key.

Sequences of chords or harmonic progressions may be
constructed. The following harmonic progression is observed
in the Toccata.

I, I7, I6, I7, I, I7, I6,V of V

The notation V of V indicates chord V of a scale formed on
the fifth degree of the current scale. So in F Major, V of V is
the fifth chord of C major (i.e. G major).

4. Harmonic Rhythm
Harmonic rhythm describes the rhythm of change of
harmony. In the toccata, the harmonic rhythm changes chord
on each beat of the bar. Since there are eight chords in the
progression, this means that the Harmonic Progression
extends over two bars.

Tables 1a and 1b summarise the interaction of these four
dimensions over the first four bars of the work. The harmonic
rhythm is notated as •�� The resulting actual harmonic
progression, with harmonic rhythm, shown on the bottom

row, is the product of ‘weaving’ the Tonal Plan, Harmonic
Rhythm, and Harmonic Progression concerns.

Table 1a

�
 �� �� ��

��
 �� �� �� �� �� �� �� �� ��

� � �
 ��� �
 � � � � � �� �����

	
 �� � � �� �
� ! � � �

•� •� •� •� •� •� •� •�

	
 �� � � �� �
� �� " �� # # �� � �

�� �$� �%� �$� �� �$� �%� & � '& �

�������

�	
 � � �

�
� �
� �
� �
�
� �
� � ��

Table 1b

�
 �� �� ��

��
 �� �� �� �� �� �� �� �� ��

� � �
 ��� �
 � � �� � ��
 � ���& ��

	
 �� � � �� ��
� ! � � �

•� •� •� •� •� •� •� •�

	
 �� � � �� �
� �� " �� # # �� � �

�� �$� �%� �$� �� �$� �%� & � '& �

�������

�	
 � � �
�� �� � �� � �� � �� �� � �� � ��

4.2 The Left Hand Part
The left-hand part consists of a repeating, one-bar rhythmic
sequence that is superimposed over the harmonic progression and
harmonic rhythm. Tables 2a and 2b represents the rhythmic
sequence. Each vertical division represents a 32nd of the bar, or
1/8 of a beat. Beat numbers are marked, for ease of reference.
Grey boxes represent sound events while black boxes represent
rests. The width of each box represents its duration. For clarity,
the onset of a sound event is marked with •��

Table 2
�� � � � � � � � �� � � � � � � �

•� � •� � � � •� •� •� � •� � � � •� �

Table 2b

�� � � � � � � � �� � � � � � � �

•� � •� � � � •� � •� � •� � � � •� �

We can define a ‘weaving’ operation that brings together this
rhythmic dimension, and the harmonic rhythm derived above, by
simply playing the chords that coincide with the LH rhythm. This
produces the four bars shown in tables 3a-3h. Here, the actual
chord is notated instead of •��

�
Table 3a

�� � � � � � � � �� � � � � � � �

�� � �� � � � �� ��
�
$�

�
�
$�

� � �
�
$�

�

Table 3b
�� � � � � � � � �� � � � � � � �

�
%�

�
�
%�

� � �
�
%�

�
�
$�

�
�
$�

� � �
�
$�

�

Table 3c
�� � � � � � � � �� � � � � � � �

�� � ��� � � � �� ��
�
$�

�
�
$�

� � �
�
$�

�

Table 3d

�� � � � � � � � �� � � � � � � �

�
%�

�
�
%�

� � �
�
%�

� �� � �� � � � �� �

Table 3e

�� � � � � � � � �� � � � � � � �

�� � �� � � � �� ��
�
$�

�
�
$�

� � �
�
$�

�

Table 3f

�� � � � � � � � �� � � � � � � �

�
%�

�
�
%�

� � �
�
%�

�
%�

�
$�

�
�
$�

� � �
�
$�

�

Table 3g

�� � � � � � � � �� � � � � � � �

�� � �� � � � �� ��
�
$�

�
�
$�

� � �
�
$�

�

Table 3h

�� � � � � � � � �� � � � � � � �

�
%�

�
�
%�

� � �
�
%�

�
%�

�� � �� � � � �� �

This represents exactly the harmonic and rhythmic elements of the
left-hand part of the piece.

4.3 The Right Hand Part
The right-hand part of the first four bars of the Toccata is
composed of the notes of a chord played singly rather than in
unison; an arpeggio figure. An example, showing the first two
beats worth of the right hand part, is shown in Common Practice
Notation in Figure 6.

Figure 6

The arpeggiated chord is dictated by the combination of the same
tonal plan, harmonic rhythm and harmonic progression as was
used in the left-hand part. However, the right hand rhythm is a so-
called moto perpetuo, with eight notes of equal duration in a beat.
The arrangement of notes that constitute the arpeggio may be
determined algorithmically, as a function of the underlying chord.

4.4 An MDSoC Expression of the Toccata.
From the foregoing, it is apparent that multiple dimensions of
concern are in operation in the composition of this work.
Informally we can consider the Left Hand part to be composed of
the Metre, Tonal Plan, Harmonic Progression, Harmonic Rhythm
and Left Hand Rhythm concerns. The Right Hand part can be
considered to be composed of the Metre, Tonal Plan, Harmonic
Progression, Harmonic Rhythm, Right Hand Rhythm and Right
Hand Arpeggiation concerns.

This analysis bears some resemblance to the hypermodule
specification of Hyper/JTM [13], and we can apply the examples
given in [13] to this musical context.

On-Demand Remodularisation

Enables the composer to remove or reconfigure the way in
which musical concerns are composed. For example, we
might choose to omit the Tonal Plan concern.

Adding additional concerns

Enables the composer to perhaps refine his work. An
example might be to add in a metrical stress concern as
explained in example 1.

Retrofitting crosscutting concerns.

An example might be adding an orchestration concern to the
music. This necessarily crosscuts the right-hand and left-
hand dimensions.

5. CONCLUSIONS
We have shown that multidimensional tangling and scattering
exists within the structure, representation and manipulation of
musical data, and also in the cognitive processes of musical
composition.

Listeners generally perceive a musical composition in terms of the
audio signals that constitute its musical surface. We have outlined
that the musical surface of a composition may be expressed
through the principal perceptual dimensions of pitch, rhythm,
loudness and the distinctive audio qualities of particular sound
sources that fall under the umbrella term of ‘timbre’. We have
shown that at a higher level, music consists of various structures,
both hierarchical and non-hierarchical, and that the musical
surface is overlaid by a tangle of such structures and musical
dimensions. The tangling that exists between musical dimensions
is not always static. For example, we cannot say that an increase
in loudness (crescendo) is always effected by simply playing
louder. Rather, the composer might realise a crescendo by
increasing the number or type of instruments that are playing
(orchestration), using alternative chords (harmony) and so on.
Thus the implementation of, in this case, a crescendo might be
scattered among other musical dimensions.

We have also described some of the ways in which the cognitive
processes of composition are tangled, and that composers might
wish to move between possibly incomplete and tangled
dimensions throughout the compositional process. Finally we
have broadly described the use of AOP in two specific examples
showing how various musical dimensions may be composed to
form a musical work.. We have noted, for example, that
orchestration is inseparable from the compositional task [15], but
that a composer might choose to orchestrate incomplete musical
sections.

To our knowledge, no current computer music representation
directly addresses the tangling of musical dimensions. We do not
suggest that all music can necessarily be represented in terms of
the separation and composition of its various dimensions.
However, we think that the ability to explicitly express the
interrelationships that exist between various musical dimensions,
and manipulate and compose these dimensions separately would

represent a significant contribution to computer music systems,
both from the perspective of the composer and the musical
analyst. In particular we feel that aspects / MDSoC go some way
to addressing two particular issues found in computer music
systems. Firstly it seems likely that, certain composers at least,
already think in terms of multiple dimensions [14][17][19], and
that aspects / MDSoC could provide a mechanism for capturing or
analysing these ideas, simultaneously adding support for natural
expression and supporting the cognitive processes of composition.
Secondly, since the separation and re-composition of concerns is
entirely flexible, we think that such an approach might free the
composer from the “tyranny of the dominant ontology” and enable
the analyst to experiment with different analytical perspectives.

6. REFERENCES
[1] Balaban, M. The Music Structures Approach in Knowledge

Representation in Music Processing. Computer Music
Journal (Summer 1996).Vol 20 (2).

[2] Belkin, A. A Practical Guide to Musical Composition.

http://www.musique.umontreal.ca/personnel/Belkin/bk/.
1995-1999.

[3] Blackwell, A.F., Green, T.R.G., Nunn, D.J.E. Cognitive

Dimensions and Musical Notation Systems. ICMC 2000.

[4] Chu-Carroll, M.C., Wright, J., Ying, A.T.T. Visual

Separation of Concerns through Multidimensional Program
Storage. In proceedings AOSD. 2003.

[5] Dannenberg, R. B., Desain, P., Honing, H. Programming
Language Design for Music. In G. De Poli, A. Picialli, S. T.
Pope, & C. Roads (eds.), Musical Signal Processing. 271-
315. Lisse: Swets & Zeitlinger. 1997.

[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design

Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley. 1995.

[7] Hirschfeld. R. Aspect-Oriented Programming with AspectS.

DoCoMo Communications Laboratories Europe, 2002.

[8] Kiczales, G. et al. Aspect Oriented Programming. In

proceedings of ECOOP. June 1997.

[9] Lerdahl, F., Jackendoff, R. A Generative Theory of Tonal

Music, MIT Press, 1983.

[10] Lieberherr K.J., Silva-Lepe I., Xiao C. Adaptive Object-

Oriented Programming using Graph Customisation. College
of Computer Science, Northeastern University. 1994.

[11] Loy, G., Abbott, C. Programming Languages for Computer

Music Synthesis, Performance and Composition. ACM
Computing Surveys, Vol.17, No. 2. June 1985.

[12] Oppenheim, D.V. Towards a Better Software-Design for

Supporting Creative Musical Activity. ICMC 1991.
[13] Ossher, H., Tarr., P. Hyper/J™ User and Installation Manual,

IBM Corporation. 2000.

[14] Pearce, M., Wiggins, G.A. Aspects of a Cognitive Theory of
Creativity in Musical Composition. Dept of Computing, City
University, London. 2002.

[15] Piston, W. Orchestration, Gollancz 1961.

[16] Shoenberg, A. (Strang F, Stein L. eds). Fundamentals of

Music composition, Faber and Faber. 1967.

[17] Sloboda, J.A. The Musical Mind. The Cognitive Psychology

of Music. Oxford University Press. 1985.

[18] Smaill, A., Wiggins, G., Harris, M. Hierarchical Music

Representation for Composition and Analysis. 1993.

[19] Speigel, L. Old Fashioned Composing from the Inside Out:

On Sounding Un-Digital on the Compositional Level.
Proceedings of the 8th Symposium on Small Computers in
the Arts, Nov. 1988.

[20] Suvée, D., Vanderperren, W., Jonckers, V. JAsCo: an

Aspect-Oriented approach tailored for Component Based
Software Development. AOSD 2003.

[21] Widor., C. M. Organ Symphony No 5. Schirmer. 1954.

[22] Wiggins, G., Miranda, E.R., Smaill, A., Harris, M. Surveying

Musical Representation Systems. Computer Music Journal.
Fall 1993 Vol 17(3).

[23] The AspectJ Programming Guide, Xerox Corporation.

1998-2002.

APPENDIX A – SIMPLE SEQUENCER
import java.util.*;

class MusicalEvent {

 String pitch;
 int durationInTicks;
 int loudness;

 MusicalEvent(String p, int d) {
 pitch = p;
 durationInTicks = d;
 loudness = 50; // Default loudness.
 }
 MusicalEvent(String p, int d, int l) {
 pitch = p;
 durationInTicks = d;
 loudness = l;
 }

 public int getDuration()
 { return durationInTicks; }

 public String getPitch()
 { return pitch; }

 public int getLoudness()
 { return loudness; }

 public String toString()
 { return "Pitch=" + pitch +
 " Duration=" + durationInTicks +

 " Loudness=" + loudness; }

 public void play() {
 System.out.println("Playing " +
 toString());
 }

 public void stop() {
 System.out.println("Stopping" +
 toString());
 }
}

class MusicSequence {

 LinkedList sequence = new LinkedList();
 ListIterator iterator = null;

 public MusicSequence() { reset(); }
}

 public void add(MusicalEvent e)
 { sequence.add(e); }

 public void reset()
 { iterator = sequence.listIterator(); }

 public MusicalEvent getNext() {
 return (MusicalEvent)(iterator.hasNext() ?
 iterator.next() : null);
 }
}

class MusicSequencer {

 MusicalEvent event;
 MusicSequence sequence;
 int currentDuration = 0;
 int tickCounter = 0;

 MusicSequencer(MusicSequence seq)
 { sequence = seq; }

 private MusicalEvent fetchNextEvent() {
 event = sequence.getNext();
 if(null == event) return null;

 currentDuration = event.getDuration();
 return event;
 }

 public void tick() throws Exception {
 if(tickCounter == currentDuration) {
 if(event != null) event.stop();
 if(null == fetchNextEvent())
 throw new
 Exception("End of Sequence");

 tickCounter = 0;
 event.play();
 }
 tickCounter++;
 }
}

class Clock extends Thread {

 MusicSequencer sequencer = null;
 boolean eventsAvailable = true;
 float sleepMillis = 20; // Default 120bpm

 public Clock(MusicSequencer l)
 { sequencer = l; }

 public void setTempo(int bpm)
 { sleepMillis = (1000 / (bpm / 60)) / 24; }

 private void tick() throws Exception
 { sequencer.tick(); }

// run() is called by Thread.start()
 public void run() {
 while(eventsAvailable) {
 try {
 tick();
 Thread.sleep((long)sleepMillis);
 }
 catch(Exception e) {
 eventsAvailable = false;
 }
 }
 }
}

class MetricalAccentDemo {

 static public void main(String[RR] args) {
 // Construct a sequence
 MusicSequence sequence =
 new MusicSequence();

 sequence.add(new MusicalEvent("Eb",12));
 sequence.add(new MusicalEvent("D",12));
 sequence.add(new MusicalEvent("D",24));
 sequence.add(new MusicalEvent("Eb",12));
 sequence.add(new MusicalEvent("D",12));
 sequence.add(new MusicalEvent("D",24));

 sequence.add(new MusicalEvent("Eb",12));
 sequence.add(new MusicalEvent("D",12));
 sequence.add(new MusicalEvent("D",24));
 sequence.add(new MusicalEvent("Bb",24));

 MusicSequencer player =
 new MusicSequencer(sequence);

 Clock clock = new Clock(player);

 sequence.reset();

 clock.setTempo(60);
 clock.start();
 }
}

	TRcover.pdf
	Using Aspects to Help Composers
	Patrick Hill
	Simon Holland
	Robin C. Laney

