
T e c h n i c a l R e p o r t N o : 2 0 0 4 / 0 4

A Framework for Hybrid Planning

Max Garagnani

19th February 2004

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

l

A Framework for Hybrid Planning
Max Garagnani

Department of Computing, The Open University - MK7 6AA (UK)
M.Garagnani@open.ac.uk

Abstract. Hybrid models are characterised by the integration of two
(or more) different paradigms of representation within the same sys-
tem. Most current planning problem description languages are purely
sentential, i.e., based on predicate logic formalisms [3, 14]. The ram-
ification of the effects of action [16] makes the sentential description
of planning problems that involve the spatial movement of physi-
cal entities over-complex and inefficient. Evidence from research in
knowledge representation and planning [6, 9, 8] indicates that these
problems are more effectively modelled using homomorphic [1] (or
analogical) representations. As for sentential descriptions, however,
the complexity of the real world prevents purely homomorphic for-
malisms from being always the most effective choice. This paper pro-
poses a model-based theoretical framework for planning with hybrid
representations, in which equivalent sentential and analogical mod-
els can be simultaneously and interchangeably used. The analogical
model which is developed extends a recently proposed representation
for purely homomorphic planning [5]. The sentential model of action
adopted is based on the current standard planning domain descrip-
tion language PDDL2.1 [3]. The result is a powerful, heterogeneous
planning representation that overcomes the limitations and offers the
complementary strenghts of the two formalisms on which it relies.

1 INTRODUCTION

Evidence from research in knowledge representation and reasoning
(see [9, 8] for useful accounts) indicates that many problems be-
come easier to solve if described using homomorphic [1] (or ana-
logical, diagrammatic [17, 10]) representations. Recent experimental
evidence in planning [6, 5] demonstrates that problems that require
planning the spatial movement and manipulation of many (abstract
or physical) entities are solved significantly faster (up to two orders
of magnitude) if recast in analogical terms. Although more efficient,
however, homomorphic representations are often criticised for their
limited expressiveness, which restricts their use to only specific do-
mains of application and prevents them from offering the universality
of propositional languages.

The aim of this work is to develop hybrid (or heterogenerous [1,
18]) planning representations, able to merge sentential and analogi-
cal models into a single formalism that combines the strengths and
overcomes the weaknesses of the two paradigms. In this paper, we
(�) review the ‘setGraph’ model described in [5, 6] (to date, the only
existing proposal of homomorphic planning representation) and ex-
tend it into a more expressive representation (Section 2); (��) briefly
describe the sentential model chosen, based on the planning domain
description language PDDL2.1 [3] and expressively equivalent to
the analogical model (Section 3); (���) describe a simple model of
hybrid planning (Section 4) which allows the two above represen-

tations to be integrated; and (��) present a general theory that guar-
antees the soundness of the approach (Section 5). In particular, the
‘Soundness Theorem’, presented at the end of Section 5, extends to
analogical and hybrid representations the theory of sound action de-
scription (originally given in [11]), until now limited to sentential
models. The final section discusses related work, limitations and fu-
ture directions.

2 THE ANALOGICAL MODEL: SETGRAPHS

This section extends and recasts in more formal and rigorous terms
the setGraph model proposed in [5]. The original model is extended
to allow (1) numeric values (hence, attributes with infinite domains),
and (2) actions involving non-conservative changes (addition and re-
moval of elements to and from a state) and numeric updates.

2.1 Extending SetGraphs with Numeric Values

In essence, a SetGraph is a collection of nodeSets, defined as follows:

Definition 1 (NodeSet) A nodeSet is either:

� a node, i.e., the empty-set element ‘�’, or
� a place i.e., a finite set of nodeSets.

Thus, nodeSets are multi-nested sets of (empty) sets, with no limit
on the level of nesting. For example, the structure ��, ����, ����,
����,� �, ����� is a nodeSet. Notice the difference between a node
(a constantly empty set ‘�’), and an empty place ‘� �’ (a nodeSet
which just happens to be empty). Given a nodeSet � , ���� repre-
sents the set of all the nodeSets contained in � (including � itself).

Definition 2 (SetGraph) A setGraph is a pair �����, where �
is a nodeSet and E=�E�� ���� ��� is a finite set of binary relations
(‘edges’) on ����.

Originally, nodeSets could only be associated to labels. The follow-
ing definition extends the formalism to allow also the use of numbers.

Let ��= � � ���, where � is the set of real numbers, and � is
the ‘undefined’ value. An element of �� will be called an ‘R-value’.

Definition 3 (Ground nodeSet) A ground nodeSet is a nodeSet in
which every place is associated to a label (string of characters) and
every node is associated either to an R-value or to a label.

Nodes, places and edges of a setGraph are grouped in different types
(or sorts), specified using three hierarchies of labels having, respec-
tively, “NODE”, “PLACE” and “EDGE” as roots. Every type ‘�’ rep-
resents the finite set of instances (leaves) of the subtree that has � as

root. Different types may have different properties. The properties of
a type are inherited by all of its subtypes and instances. In the fol-
lowing example, the PLACE hierarchy is used to constrain the type
of nodeSets that select places will be allowed to contain.

Example 1 - Consider a simple ‘Briefcase’ scenario, consisting
of two connected locations (home and office), one briefcase, and
three objects (called ‘A’, ‘C’ and ‘D’). The briefcase can be moved
freely from one location to the other. The objects can only be
put inside and taken out of the briefcase at one of the two loca-
tions. The state �(at Brief Home) (at A Home) (at C
Home) (in D Brief)� can be encoded as a setGraph � �
�	��
��, where:

	� = � Home�A,C,Brief�D��, Off� �, 1 �

� = � (Home,Off), (Off,Home), (Brief,1) �

The syntax “name��� �� ���� �” denotes a place with label ‘name’
containing nodeSets �� �� ���� ; all nodes are simply represented by
their associated label or R-value. Two (unlabelled) edges in
� are
used to represent the bidirectional connection between the two lo-
cations. The node with value ‘1’ represents the number of objects
currently contained in the briefcase; this attribute is encoded through
an edge associating place ‘Brief’ to a (numeric) node.

Figure 1.(�) shows a graphical representation of setGraph �. All
and only the nodeSets that are contained in a place are depicted
within the perimeter of the corresponding oval. Figure 1.(�) con-
tains the NODE and PLACE sort hierarchies (the EDGE hierarchy, not
shown, has no other node than the root). Notice that nodes and places
can be considered as subtypes of ‘nodeSet’. The PLACE hierarchy re-
stricts any instance of a ‘Mobile’ place (in this case, ‘Brief’) to
contain only ‘Portable’ nodes (by default, a place would be al-
lowed to contain any PLACE � NODE instances).

{Portable}

PLACE

Mobile

Location
Brief

NODE

A

D
C

Portable

OffHome

Home

A

C

Brief
D

Off

1

.
(a) (b)

Figure 1. SetGraph encoding of Briefcase domain: (�) Graphical
representation of � � ���� ���; (�) Sort hierarchies

A typed setGraph is a setGraph in which some of the instances or
R-values have been replaced with types or variables (having appro-
priate domain). We will refer to the label or variable name associated
to a nodeSet as to that nodeSet’s identifier. An instantiated setGraph
is a typed setGraph in which all elements are associated to either
instances, R-values, or numeric variables. A ground setGraph is an
instantiated setGraph containing no variables (e.g., see Fig. 1.(�)).

2.2 Extending the Action Representation

In addition to the description of the initial world state, which is en-
coded as a ground setGraph, a planner must also be provided with a
(declarative) specification of how states are changed by actions.

The original setGraph model [5] was limited to actions consisting
only of nodeSet movement. Here, we consider the following possible

state (setGraph) transformations: (�) addition or removal of an ele-
ment, (�) movement of a nodeSet, and (Æ) re-assignment (or update)
of an R-value associated to one of the nodes. The movement (or re-
moval) of elements in a setGraph is based on the following general
rules: (1) if a node is moved (removed), all edges linked to it move
(are removed) with it; (2) if a place is moved (removed), all the ele-
ments contained in it and all edges linked to it move (are removed)
with it. Given the current R-value � of a node and � 	 ��, the
possible update operations are: (�) assignment (� �� �); (�) increase
(� �� ���); (�) decrease (� �� �
�); (�) scale-up (� �� � ��), and
(�) scale-down (� �� ���). Finally, any element not moved, removed
or updated is left unaltered (i.e., we assume default persistence).

As usual, the domain-specific legal transformations of a state
(ground setGraph) will be defined through a set of action schemata
(operators). An operator � � ��� ��� consists of precondi-
tions �� (specifying the situation required to hold in the state before
the action is executed) and effects �� (describing the situation of
the state after). For example, Figure 2.(�) depicts a graphical repre-
sentation of the “Move-briefcase” operator for the Briefcase domain,
which allows moving a mobile object � (and its contents) from one
location to another. The elements to the left of the arrow represent
the preconditions; those to the right, the effects.

x

Mobile∋x

y,z ∋

Location

y

z

x
y

z

a() b()

x

y

x

z
y ∋Portable

increase xz ∋

Mobile
x < 3

1

z y

.
Figure 2. Briefcase domain: (�) “Move-briefcase” operator;

(�) “Put-in” operator

Preconditions and effects are composed of two separate parts, ana-
logical and numerical. The analogical component consists of an or-
dered list of typed setGraphs. The numerical part of the precondi-
tions consists of a set of comparisons (���������� ��) between
pairs of numerical expressions, while the numerical effects consist
of a set of update operations of the kind (�)–(�) listed earlier. For
example, Figure 2.(�) represents graphically the “Put-in” operator,
which moves an object � inside a mobile (subject to them being at
the same location, and to the mobile containing at most two objects).
The analogical precondition and effect lists of this operator consist of
only one typed setGraph. The numerical parts constrain and update,
respectively, the value � 	��of the node associated to the mobile .

The semantics of action are specified by providing an algorithmic
definition of the following: (�) a method to check whether an opera-
tor� is applicable in a given state �; (�) a method for calculating the
new state resulting from the application of an operator � to a state �.
These definitions, given below, rely upon the following definition of
satisfaction, which specifies the conditions for a ground setGraph G
to ‘match’ a typed setGraph T. Intuitively, T and G match iff T can be
made ‘overlap’ with G (or with parts of it) by replacing all of its sort
labels and variables with instances and R-values, as appropriate:1

Definition 4 (Satisfaction) Given three NODE-PLACE-EDGE type
hierarchies, a typed setGraph T=����� and a ground setGraph G,

� The number of possible instantiated setGraphs that can be obtained from a
typed setGraph by replacing sorts and sort variables with instances is finite.

2

T is satisfied in G iff there is a substitution � of all sort variables in T
with instances of corresponding sorts, and a 1-1 function � � � � �
binding elements of T to elements of G, such that:

� for all nodeSets �� � 	 ����, if � 	 � then ���� 	 ����;
� for all edges � � ��� �� 	 �, ���� � ������ �����;
� for each element � of T, if �� and �� are the identifiers or R-values

of � and ���� after substitution �, then either (1) �� � �� , or (2)
�� is an instance of �� (i.e., �� 	 ��), or (3) one is a numeric
variable, and the other is an R-value or a numeric variable.

For example, given the sort hierarchies of Figure 1.(�), the precondi-
tions of the two operators of Figure 2 are both satisfied in the ground
setGraph of Figure 1.(�). (E.g., for the preconditions of “Put-in” to be
satisfied, either � = (�/1, �/A, /Brief) or �� = (�/1, �/D, /Brief)
can be applied, with � binding each of the labelled elements to the
elements of Figure 1.(�) having identical identifier, the top place to
place ‘Home’ and edge (,�) to edge (Brief,1)2).

We are now ready to define methods (�) and (�), presented earlier:
��� An action schema � � ��� ��� is applicable in a state

(ground setGraph) � iff (1) all the typed setGraphs of �� are satis-
fied in � (through one substitution � and one binding �), and (2) all
the numeric comparisons in �� are satisfied (after the appropriate
variable/R-value replacements have been made).
��� If operator � is applicable in state �, the result of applying

� to � is the new ground setGraph obtained from � by (1) carrying
out (on the corresponding elements of � identified through binding
�) the transformations required to change each of the setGraphs of
�� into the (respective) final situation specified in ��, and (2) for
each update operation of ��, updating the current R-values of the
numeric nodes with the result of the given operations.3

3 THE SENTENTIAL MODEL: PDDL2.1-lev�
�

The sentential representation adopted for this analysis is based on
PDDL2.1 semantics [3], which builds on and extends the original
core of Lifschitz’ STRIPS semantics [11] to handle durative actions,
numeric and conditional effectsn. The action description adopted
here, however, is a simplified version of PDDL2.1, and is better
thought of as extending STRIPS to numbers and functor symbols.

As in PDDL2.1 [3], the sentential world state is composed of two
separate parts, a logical (STRIPS-like) state and a numeric state.
While the logical state � is a set of atomic formulæ (the truth of an
atom � depending on whether � 	 �), the numeric state consists
of a finite vector of R-values, containing all the current values of
the possible primitive numeric expressions (PNEs) of the problem.
A PNE is a formula ����� ���� ���, where �� 	 �, set � contains
all the objects of the domain, and � is a functor symbol such that
� � �� � � (Section 5 below provides a more precise definition).

A sentential operator � � �	 �� specifies a transformation of
a state-pair � �(logical, numeric) into a new state-pair ��. In this
simplified version, the preconditions 	 contain a set of (possibly
negative) atoms and a set of comparisons between pairs of numeric
expressions (containing PNEs and numbers). The effects � consist
of a set of (possibly negative) atoms and a set of update operations
of form “Op expr”, where ‘Op’ is one of the five update opera-
tors (�)–(�) used for the analogical action schemata (Section 2.2),
 is a PNE, and ‘expr’ is a numeric expression (combining PNEs

� Any element of a typed setGraph having no specific label is considered as
associated to the root label of the corresponding hierarchy.

� All the update operations are calculated using the ‘old’ R-values of the
nodes, so that the order in which the updates are executed is irrelevant.

and/or real numbers). The complete semantics for these operators is
described in [3]. An example of sentential operator is given in the
next section.

Finally, we note that any PDDL2.1 ‘level 2’ (i.e., non-durative ac-
tions) operator can be compiled into an equivalent set of ground op-
erators of the above form [3]. In view of this equivalence, we refer to
the sentential formalism described above as to “PDDL2.1-lev��”.

4 THE HYBRID REPRESENTATION

The hybrid model ‘glues’ together the analogical and sentential mod-
els described above. In the hybrid representation, the world state is
composed of two distinct parts: an analogical state and a senten-
tial state. The two components are treated as two independent sub-
states, much like logical and numerical states are treated separately
in PDDL2.1. In particular, a hybrid operator consists of two distinct
parts, each describing a transformation of the respective sub-state.

For example, consider a modified Briefcase domain, in which a
bucket ‘B’ containing green paint is used to carry around the portable
objects A,C,D. Any object dropped in the bucket becomes green.
The analogical part of the ‘Drop-in’ operator would be identical to
the ‘Put-in’ action depicted in Figure 2.(�). The sentential part could
consist of the following preconditions 	 and effects �:

	 = � (colour �) �
� = � (colour � Green), (not (colour �))�

where � 	 Portable and 	Colours=�Green,Blue,����.
As described in the previous section, the sentential part of the op-
erator may also contain numerical elements. For example, given
a 1-placed function ‘Total obj’ returning the number of items
currently contained by a ‘Mobile’ object, precondition 	 could re-
quire (< (Total obj B) 3), and effect� would contain (in-
crease (Total obj B) 1). This function is currently imple-
mented in the analogical representation using a numeric node (‘�’ in
Fig. 2.(�)).

5 SOUNDNESS OF HYBRID MODELS

The simple juxtaposition of sentential and analogical representations
does not guarantee that the resulting model is sound with respect to
the real domain represented. In this section, we describe a unifying
framework that leads to the specification of the conditions for sound
hybrid representations. These conditions extend those identified by
Lifschitz in [11], which are restricted to sentential representations
(and which are still at the basis of current planning languages [3]).

Following [11], the world is taken to be, at any instant of time, in a
certain state �, one of a set ! of possible ones. A domain consists of
a finite set " of entities and finite sets of relations among (and prop-
erties of) entities. In order to describe a domain, we adopt a formal
language � � �	� #� ��, where 	� #� � are finite sets of relation,
function and constant symbols, respectively. Each relation and func-
tion symbol of 	 and # can be either numeric or logical. The wff of
�, logical and numeric atoms, are built as follows:

� ����� ���� ��� is a primitive numeric expression (PNE) iff � 	 #
and ��� ���� �� are terms; � is a term iff � 	 �

� $���� ���� ��� is a numeric expression (NE) iff $ 	 # and ��� ���� ��
are either PNEs or NEs; also, real numbers are NEs

� � ���� ���� ��� is a logical atom iff � 	 	 and ��� �� is a term
� %���� ���� ��� is a numeric atom iff % 	 	 and ��� �� 	 PNE � NE

3

The symbols of � are given the standard semantics [2, Section 1.3].
In particular, an interpretation function & will map each constant
symbol � 	 � to a distinct entity � � &��� 	 " , each '-placed logi-
cal function symbol � 	 # to a function &��� � "� � �, and each
(-placed logical relation symbol � 	 	 to a relation &��� � "�.
Each '-placed numeric function symbol $ 	 # is mapped to a
(fixed) function &�$� � �� � �, and each (-placed numeric rela-
tion symbol % 	 	 to a (fixed) relation on real numbers &�%� � ��.
When � 	 �, &��� � �. If � � ����� ���� ���, with � 	 # and
�� 	 � � PNE � NE, then &��� is the value (in the current state �) of
&��� calculated in &����� � � � � &���� (written ‘����� � � � � ��� ��’).

Definition 5 (Atom-satisfaction) Given a language �	� #� ��, a
state � 	 ! and an interpretation &, an atom ����� � � � � ��� 	 �
is satisfied in � iff &����� � � � � &���� share relation &��� in �.

In what follows we assume that, for a given language �, a fixed in-
terpretation ‘&’ is adopted.

Consider an abstract data structure � (such as a tree, a list, an
array, etc.) and a universe � of elements (e.g., integers, characters,
booleans,...). Let �� be a select set of instances of � built using
elements in � (e.g., trees of booleans, of lists of integers, etc.).

Definition 6 (Model) Given a language � � �	� #� �� and a set
�� of data structure instances with elements 	 � , a model is a pair
M=(��)), where � 	 �� and) is a 1-1 total function) � � � � .

A model is essentially a data structure containing elements taken
from a set � . The function) maps the relevant objects (symbols)
of the domain to the corresponding elements of the universe that rep-
resent them (which may or may not appear in the model). The use of
an unspecified data structure � allows this definition to be used for
both sentential (PDDL2.1-lev��) and analogical (setGraph) models,
as demonstrated, respectively, in Example 2 and Example 3 below.

Definition 7 (Domain representation structure) A domain repre-
sentation structure (DRS) for a language � with interpretation & is
a triple ��� �����, where �� is a set of instances of a data struc-
ture � with elements in � , and each *� 	 � (+	 	 �) is an al-
gorithm associated to the (-placed ('-placed) relation (function)
symbol � 	 	 (, 	 #), such that *�� +	 always terminate, and:

� for each logical relation symbol � 	 	� *
 ��� � �� � ��� 	�
� for each logical function symbol � 	 #� +� ��� � �� ���
� for each numeric relation (function) symbol % 	 	 ($ 	 #),
*� calculates &�%� � �� and + calculates &�$� � �� � �

Basically, a DRS consists of a data structure and a set of algorithms
for ‘checking’ it. Each algorithm takes as input a model (a data struc-
ture instance) and a set of object symbols, and (always) returns a
value. For example, given (objects ��� � � � ��, in order to establish
whether ����� � � � ��� holds in the current model M, it will be suf-
ficient to run the corresponding procedure *
 on M, using symbols
)����� � � �)���� 	 � (representing objects ��� � � � �� in M) as input.

Definition 8 (Model-representation) Given a language �, a DRS
� � ��� ����� for � and a model M=(��)) with � 	 �� , M rep-
resents a state � 	 ! (written ‘M ��� �’) iff, for every logical atom
�����...��� and PNE �����...��� of �, both of the following hold:

� *
���)����� ����)����� � 	 iff ����� ���� ��� is satisfied in s
� +����)����� ����)����� � ����� ���� ��� ��

(if ����� ���� ��� �� is undefined, +� ���)����� ����)����� � �)

Proposition 1 Given a state � 	 !, a DRS � for a language � and
a model - � ���)� in �, if - ��� � then, for all numeric atoms
%���� ���� ��� of �,

*�������� ���� ������ � ���� �� %����...��� is satisfied in �,

where ‘�’ is an evaluation function defined as follows:

� if � is a number, ���� � �
� if � � ����� ���� ��� 	 PNE, then ���� � +� ���)����� ����)�����
� if � � ����� ���� ��� 	 NE, then ���� � +� ����	���� ���� ���	����

Example 2 - Consider the Briefcase domain. The briefcase, the two
locations (home and office) and the three portable objects are the en-
tities of interest. The property “to be inside” is the relation of interest,
and the number of objects inside the briefcase is the only relevant nu-
meric property. Let the language �� contain the following symbols,
having their standard interpretation: a 2-placed logical relation ‘In’, a
1-placed logical function ‘Total obj’, and a 2-placed numeric relation
‘�’. The constant symbols are ��=�A,C,D,Brief,Home,Off�.

Let us build, for this domain and language, a sentential domain
representation structure DRS� which replicates the semantics of
PDDL2.1-lev��. Accordingly, we choose to represent the state using
a data structure �� composed of a set . of strings and a numeric
variable (with value 	��. The universe � consists of set ��. Pro-
cedure *����� �� �� takes as input a data structure � � �.�(� and
two strings �� � 	 � , and returns ‘1’ iff the string “In (�,�)” 	 .
(after replacing �� � as appropriate). Procedure +����� ��� ��� �� takes
as input a structure � � �.�(� and a string � 	 � , and returns the
value of variable (if �=“Brief”,� otherwise. Procedure *���� ��
returns ‘True’ iff � is smaller than �. Then, given a model M=(��))
such that) � �� � � maps constant symbols to equivalent strings,
M represents a Briefcase-domain state � iff the set. contains all and
only the logical atoms of �� which are satisfied in �, and variable (
contains the current number of objects in the briefcase (i.e., the value
of the PNE ‘Total obj’). This encoding is essentially equivalent
to the PDDL2.1 sentential model (see Section 3).

Notice that, thanks to Proposition 1, if - represents state �, pro-
cedure *� can be used to determine whether any (arbitrarily com-
plex) numeric atom of �� is satisfied in � – for example, whether
�(Total obj, 3) is satisfied.

Definition 9 (Planning Domain) A planning domain is a pair
�!�/�, where ! is the set of possible world states, and /, the set
of actions, is a finite set of total functions � � ! � !.

Given a domain �!�/� (with language � and DRS �) and a set

of models in �,
 represents ! iff each model - 	
 represents
exactly one state � 	 !, and �� 	 !� ��- 	
 such that - ��� �.

Definition 10 (Sound action model) Given a domain �!�/� (with
language � and DRS �) and a set
 of models in � representing !,
a function 0 �
�
 is a sound model of � 	 / iff, for each model
M 	
 and state � 	 ! such that - ��� �, 0�-� ��� ����.

Given a domain D=�!�/�, a pair R=�
��� is a sound representation
of D iff
 is a set of models representing !, and � � �0�� ���� 0��
is a set of sound models of the actions ���� ���� ���=/.

Theorem 1 (Soundness) Let R=�
��� be a sound representation
of a domain D=�!�/�. Let 10 � �0�� ���� 0�� be a sequence (plan) of
sound action models, and 1� � ���� ���� ��� be the corresponding se-
quence of actions. If-� 	
 represents �� 	 !, and the application
of 10 to -� produces -� � 10�-��, then -� represents 1�����.

4

Theorem 1 and the definition of sound action model extend to hy-
brid representations the ‘Soundness Theorem’ and ‘Definition A’
given in [11], which were restricted to purely sentential models (the
proof is by induction and is analogous to the original proof [11]).
In essence, the concept of satisfaction is replaced here with that of
representation, applicable to both the sentential and analogical case.

The second result, presented below, shows that the analogical and
sentential formalisms considered have equivalent expressive power:

Theorem 2 (Equivalence) Any setGraph encoding of a planning
domain can be transformed into an equivalent sentential (PDDL2.1-
lev��) description, and vice versa.

A sketch of the proof is reported in the Appendix. The next example
completes the setGraph encoding of the Briefcase domain. Notice
that the equivalent sentential version, given in Example 2, is defined
using the same theoretical framework (which is the object of this
section).

Example 3 - Consider the Briefcase domain, with language �� and
interpretation as specified in Example 2. Let us define, for this do-
main and language, an analogical domain representation structure
DRS�. The data structure �� adopted is the setGraph (an example of
state was given in Figure 1.(�)). The universe � consists of set ��.

Procedure *����� �� �� takes as input a ground setGraph � and
two labels �� � 	 � , and returns ‘1’ iff the setGraph of Figure 3.(�)
(having parameters �� � substituted with the corresponding input) is
satisfied in �. Procedure +����� ��� ��� �� takes as input a ground set-
Graph � and a string � 	 ������ � � , and, if �� such that the
setGraph of Figure 3.(�) is satisfied in � with mapping �, it returns
the R-value �� �,� otherwise. Procedure *���� �� works as usual.

b()a()

x ∋
Mobile

w ⊥

x

w

∋RPLACE∋y

∋x

yx

PLACE NODEU
.

Figure 3. Briefcase domain: (�) typed setGraph encoding procedure
������ ��; (�) typed setGraph encoding procedure 	����� ��� ���

6 RELATED WORK AND DISCUSSION

The main contribution of this paper is a sound theoretical framework
(Definitions 5-10 and Theorem 1) for planning with analogical, sen-
tential and hybrid representations. It should be pointed out that the
framework described is not specific to the analogical or sentential
models that have been considered here: although we have shown how
both setGraphs and PDDL2.1-lev�� representations can be supported,
the theoretical model provides a basis for the integration of any other
sentential and homomorphic representations that satisfy its premises.

The second contribution consists of an expressive analogical plan-
ning representation (Definitions 1-4), which extends the original ‘set-
Graph’ model [5] and makes it expressively equivalent to the senten-
tial model adopted (Theorem 2). It should be noticed that although
the extended formalism can ultimately encode any PDDL2.1 ‘level-
2’ planning domain description, it can do so only if conditional
effects, quantification and disjunctive preconditions are previously
compiled away [3]. In this sense, the expressiveness of the setGraph
formalism is still limited. Nevertheless, we expect that adding this
kind of ‘syntactic sugar’ to the model should not be too difficult.

A specific syntax for setGraph-based planning languages has not
been discussed here. The BNF specification of a language for purely
analogical planning was proposed by Garagnani and Ding in their
original paper [5], but was restricted to the use of two-dimensional
arrays of characters. While the full setGraph representation certainly
requires a more complex definition, the simplicity of the elements
upon which the model is built – lists, sets, nodes and pointers –
should make a syntax specification relatively straightforward.

Myers and Konolige [15] described a hybrid framework for prob-
lem solving that allowed a sentential system to carry out deductive
reasoning with and about diagrams. Their system allowed the addi-
tion (and extraction) of information to and from diagram models, but
did not permit existing analogical information to be “retracted” from
the models. This possibility is crucial for enabling non-monotonic
changes of a diagram, typically associated with the execution of an
action. Similar considerations apply to other works on heterogeneous
representations, such as [1, 18]. The work of Glasgow and Malton
on purely analogical, model-based spatial reasoning [7] is closely
related to many of the ideas developed here; the present work gener-
alises to hybrid models their approach, and extends it with a repre-
sentation for describing and reasoning about the effects of an action.

The work of Long and Fox on the automatic detection of generic
types [12] and on their use in problem decomposition [4, 13] is also
relevant in this context. In particular, hybrid models can encode dif-
ferent aspects of a domain using distinct representations. For ex-
ample, while analogical models can be used to encode spatial (or
abstract) movement in a simple and efficient way, sentential repre-
sentations appear to be more indicated for describing ‘static’ state
changes. This ability to separate and solve independently the differ-
ent components of a domain naturally leads to an effective problem
decomposition. If the dynamics of a domain can be recast in terms
of movement or manipulation of (abstract or physical) entities, the
contraints that regulate the movement of such entities can be made
implicit in an analogical (or hybrid) domain description, and signifi-
cantly speed up the planning process.

Two important aspects of action modelling that have not been dealt
with here concern the specification of concurrent and durative (ana-
logical) actions. The conditions guaranteeing the non-interference of
two sentential (PDDL2.1) operators and the semantics of sentential
durative actions are discussed by Fox and Long in [3]. A possible ap-
proach to identifying non-interference conditions for the concurrent
execution of setGraph operators may be to require that the elements
of the setGraph acted upon by the operators be disjoint. However, the
introduction of time and durative analogical actions, possibly in pres-
ence of other features – such as conditional and continuous effects –
makes this a rather complex issue, requiring further investigation.

In summary, the ability to integrate different formalisms and com-
bine their complementary and competing strenghts (such as effi-
ciency, expressiveness and simplicity of encoding) allows planning
language designers to develop models that overcome the weak-
nesses of purely sentential or diagrammatic representations. This pa-
per lays the theoretical foundations for the development of sound,
hybrid planning systems that integrate propositional and analogical
models based on setGraphs or other, more advanced, homomorphic
structures. The planner prototype and experimental results described
in [6, 5] demonstrate the feasibility of the approach and the potential
speed up of (purely) analogical planning. Thus, having addressed the
basic practical and theoretical issues involved in the proposal, this
work is now ripe for a full implementation and fielded application.

5

ACKNOWLEDGEMENTS

This work was partially supported by the UK EPSRC (grant no.
GR/R53432/01). Thanks also to Michael Jackson, Neil Smith and
Yucheng Ding for their useful comments and feedback.

REFERENCES

[1] J. Barwise and J. Etchemendy, ‘Heterogeneous logic’, in [8], chapter 7,
211–234, (1995).

[2] C. Chang and H. Keisler, Model Theory, Elsevier Press, New York,
1977.

[3] M. Fox and D. Long, ‘PDDL2.1: An extension to PDDL for express-
ing temporal planning domains’, Journal of Artificial Intelligence Re-
search, 20, 61–124, (2003).

[4] M. Fox and D.P. Long, ‘STAN4: A Hybrid Planning Strategy Based on
Sub-problem Abstraction’, AI Magazine, 22(4), (2001).

[5] M. Garagnani, ‘Model-Based Planning in Physical domains using Set-
Graphs’, in Research and Development in Intelligent Systems XX: Pro-
ceedings of AI2003, eds., M. Bramer, A. Preece, and F. Coenen, pp.
295–308, London, England, (December 2003). Springer-Verlag.

[6] M. Garagnani and Y. Ding, ‘Model-based planning for object-
rearrangement problems’, in Proceedings of the International Confer-
ence on Automated Planning and Scheduling (ICAPS-03) - Workshop
on PDDL, pp. 49–58, Trento, Italy, (June 2003).

[7] J. Glasgow and A. Malton, ‘A semantics for model-based spatial rea-
soning’, Technical Report 94-360, Department of Computing and In-
formation Science, Queen’s University, Kingston, Ontario, (1994).

[8] Diagrammatic Reasoning, eds., J. Glasgow, N.H. Narayanan, and
B. Chandrasekaran, AAAI Press/The MIT Press, Cambridge, MA,
1995.

[9] Z. Kulpa, ‘Diagrammatic representation and reasoning’, Machine
GRAPHICS & VISION, 3(1/2), 77–103, (1994).

[10] J.H. Larkin and H.A. Simon, ‘Why a diagram is (sometimes) worth ten
thousands words’, Cognitive Science, 11, 65–99, (1987).

[11] V. Lifschitz, ‘On the semantics of STRIPS’, in Proceedigns of 1986
Workshop: Reasoning about Actions and Plans, eds., M.P. Georgeff and
Lansky, (1986).

[12] D. Long and M. Fox, ‘Automatic synthesis and use of generic types
in planning’, in Proceedings of the 5th International Conference on AI
Planning and Scheduling Systems (AIPS’00), eds., S. Chien, S. Kamb-
hampati, and C.A. Knoblock, pp. 196–205, Breckenridge, CO, (April
2000). AAAI Press.

[13] D. Long and M. Fox, ‘Extracting route-planning: First steps in auto-
matic problem decomposition’, in Proceedings of AIPS’00 Workshop
on Analysing and Exploiting Domain Knowledge for efficient Planning,
(2000).

[14] D. McDermott, C. Knoblock, M. Veloso, D. Weld, and D. Wilkins,
‘PDDL – the planning domain definition language. Version 1.7’, Tech-
nical report, Department of Computer Science, Yale University (CT),
(1998). (Available at www.cs.yale.edu/homes/dvm/).

[15] K. Myers and K. Konolige, ‘Reasoning with analogical representa-
tions’, in Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Third International Conference (KR92), eds., B. Nebel,
C. Rich, and W. Swartout, pp. 189–200. Morgan Kaufmann Publishers
Inc., San Mateo, CA, (1992).

[16] J.L. Pollock, ‘Perceiving and Reasoning about a Changing World’,
Computational Intelligence, 14(4), 498–562, (1998).

[17] A. Sloman, ‘Afterthoughts on analogical representations’, in Proceed-
ings of the First Workshop on Theoretical Issues in Natural Language
Processing (TINLAP-1), pp. 164–171, Cambridge, MA, (1975).

[18] N. Swoboda and G. Allwein, ‘A case study of the design and implemen-
tation of heterogeneous reasoning systems’, in Logical and Computa-
tional Aspects of Model-Based Reasoning, eds., L. Magnani, N.J. Ners-
essian, and C. Pizzi, chapter 9, 3–20, Kluwer, Dordrecht, NL, (2002).

Appendix A

Theorem 2 (Equivalence) Any setGraph encoding of a planning
domain can be transformed into an equivalent sentential (PDDL2.1-
lev��) description, and vice versa.

Proof sketch – Consider the first part of the theorem. We first show
how to transform every setGraph into a sentential state-pair (logical,
numeric). We then argue that, within such encoding, any setGraph
operator can be transformed into an equivalent sentential operator.

By definition, a setGraph is a pair �����, where � is a set of
nodeSets and � a set of binary relations on ����. This structure
can be easily encoded using two predicates (e.g., ‘link(�� �� �)’ and
‘in(�� �)’) expressing, respectively, the presence of edge ��� �� and
that nodeSet � is an element of �. In addition, let each R-value 2
present in � be replaced by a label, uniquely identifying that node.
The label can then be used as 0-placed function symbol and assigned
the value 2 through the PNE vector of the numeric part of the senten-
tial state. Given this encoding, every analogical transformation of a
setGraph � into � � can be ‘simulated’ in the sentential representa-
tion by adding or removing the appropriate atoms to/from the current
logical state 3, so that 3� represents � �. The numeric update of an
R-value associated to a node is transformed into an update of the
corresponding PNE in
.

Consider the second part of the theorem. We first show how to
transform every sentential state-pair (logical, numeric) into a cor-
responding setGraph, and then how any sentential operator can be
encoded by an equivalent setGraph operator in this representation.

Every state-pair � � �3�
� consists of a finite set 3 of ground
atoms �� and a finite vector
 of R-values, corresponding to the val-
ues �	 of the PNEs �	 in �. Let G be a ground setGraph that contains
the following elements: (1) a place labelled “True”; (2) a distinct
node (labelled “��”) for each possible ground atom �� of the domain
language �; and (3) a pair of nodes (having identifier “�	” and R-
value �	 , respectively) and one edge (linking �	 to �) for each PNE
�	 . Each node corresponding to an atom �� 	 3 will be placed inside
True, while all the remaining nodes outside. Then, the truth of any
atom �� can be determined by checking if the setGraph (True����,�)
is satisfied in G. In addition, the value of the PNE �	 is identified by
the value of node �� � to which the node labelled has to be bound
for typed setGraph (��	 � �,�(�	 �)�) to be satisfied in G.

Given the above encoding, every setGraph operator can be trans-
formed into an equivalent sentential operator as follows: each addi-
tion (removal) of a ground atom �� to (from) the logical state 3 cor-
responds to the movement of node “��” inside (outside) place True.
Similarly, each update of a PNE in
 is encoded through the update
of the R-value of the node in the corresponding linked pair.

6

