
T e c h n i c a l R e p o r t N o 2 0 0 4 / 2 1

A Critical Analysis of Synthesizer User Interfaces for

timbre

Allan Seago
Simon Holland

Paul Mulholland

11th June 2004

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

l

ISSN 1744-1986

A CRITICAL ANALYSIS OF SYNTHESIZER USER INTERFACES FOR
TIMBRE

Allan Seago
London Metropolitan University

Commercial Road
London E1 1LA

a.seago@londonmet.ac.uk

 Simon Holland
Dept of Computing

The Open University
Milton Keynes MK7 6AA

s.holland@open.ac.uk

 Paul Mulholland
KMI

The Open University
Milton Keynes MK7 6AA
 p.mulholland@open.ac.uk

ABSTRACT
In this paper, we review and analyse some categories of
user interface for hardware and software electronic music
synthesizers. Problems with the user specification and
modification of timbre are discussed. Three principal types
of user interface for controlling timbre are distinguished. A
problem common to all three categories is identified: that
the core language of each category has no well-defined
mapping onto the task languages of subjective timbre
categories used by musicians.

Keywords
Music, Synthesis, Synthesizers, Timbre, Usability.

1. INTRODUCTION
This paper analyses representative user interfaces for
specifying and controlling timbre in electronic music
synthesizers. Relevant taxonomies, design issues and
problems for interface design in this domain are identified.
We characterise an underlying problem for all categories of
interface analysed. Some possible future directions for
addressing the problems are proposed.

The user interfaces of audio hardware and software
generally, and of music synthesizers in particular, have
received relatively little study within HCI. An analysis
conducted on the working methods of composers working
with Computer Music Systems (CMS) [8] identified
various typical tasks, and concluded that CMS designers
must allow for wide variations in composers’ knowledge
and skill and wide individual variation in the types of
composer they are designing for. Recommendations
included: providing more than one level of interaction;
hiding unwanted levels of complexity; and employing
knowledge based systems (KBS) to manage details that a
user does not wish to specify directly. A previous critique
of synthesizer user interface design [11] focused on the

control surfaces of four contemporary instruments, and
commented on the degree to which they conformed to
design principles identified by Williges et al [16]. It was
concluded that the demands placed on the user by the
interfaces meant that they were far from ideal for the
purpose: noting that, in general, ‘user interface principles
have been, at best haphazardly applied’. The authors also
suggested issues that should drive future research in this
area. Another more recent related study [4] has applied a
heuristic evaluation to an electric guitar pre-amplifier
interface. The present paper examines a number of
categories of user interface for controlling timbre, taking
commercial software and hardware synthesizers as
examples.

2. BACKGROUND
While the range of tools and techniques available to the
musician for the design and editing of sound is very large,
usability in modern synthesizers is generally poor [6,10,3].
Thimbleby’s example of the design of electronic calculators
[15] is of relevance here. He notes that the hand held
calculator is a ‘mature technology’, with well defined
requirements, but goes on to describe two models of
calculator which look superficially very similar, but whose
controls often do different things. Similarly, over the past
fifteen years, control surface designs of commercially
available synthesizers have to some degree converged, to
the extent that we can consider the instrument to have
acquired a generic interface [9]. However, one cannot
assume that similar looking buttons will perform the same
function. Conversely, a given function could be performed
by diverse different controls.

The range of tasks that must be performed by a synthesizer
is both broader and less easily defined than the range
performed by a calculator. Poor usability has led to a
situation where most users seem to have limited their
choices of timbre to selections from a bank of preset
timbres - evidence for this is largely anecdotal, but
“allegedly, nine out of ten DX7s coming into workshops
for servicing still had their factory presets intact” [1].

Over the last few years, hardware synthesizer functionality
has increasingly been migrating into software (Reaktor,
Reason etc). This development has potentially freed
designers from the constraints imposed by hardware
limitations, particularly from the limited space available for
controllers and displays, but also from cost constraints of
hardware controls. Yet, software designers have sought to

emulate hardware synthesizers not only in models of
synthesis – how the sounds are generated - but also in the
user interface. Thus, the user is presented on screen with a
simulation of a synthesizer hardware control surface, and
must control it via virtual buttons, faders and rotary dials
that mimic the hardware they have replaced. For many
users, this has the virtue of familiarity; but it tends to
impose unnecessary usability problems.

Pressing [9] describes the controls of the synthesizer user
interface as falling into two broad categories: those which
govern ‘real time’ synthesis, and those which provide
access to the parameters governing ‘fixed’ synthesis. Real
time synthesis controllers, such as pitch wheels, foot
pedals and the keyboard, allow instant and dynamic
modification of single scalar aspects of existing sounds:
pitch, filter frequency, volume etc. These controllers are
designed and positioned on the control surface to meet the
requirements of real-time performance, and it is relatively
easy for users to understand their use: the effect that a
controller has on the sound is instantly audible. Real time
controls will not be considered further here.

The part of the interface devoted to ‘fixed synthesis’ is the
focus of the current study. In fact, as we will see in the
next section, the term 'fixed' is something of a misnomer,
since in many cases, the control of timbre is achieved by
wide-ranging modifications of this element. A more
suitable term might be 'relatively fixed'; however we will
retain Pressing's terminology, while noting any resulting
ambiguities.

The 'fixed synthesis' component of the interface allows the
design and programming of sound objects. Its informed
use typically requires an in-depth understanding of the
internal architecture of the instrument, and the methods
used to represent and to generate sound. Thus, under most
current systems, the user is obliged to express directives
for sound specification in system terminology, rather than
in language derived from the user domain.

3. TASK AND CORE LANGUAGES
There is a considerable gulf between the task languages and
the core languages [2] in synthesizer interfaces. Task
language terms like shrill, spacious, dark, grainy etc are
among those typically used by musicians to describe those
attributes of sound - timbre, texture and articulation -
which cannot be captured well by conventional musical
notation. These terms are often chosen for their perceived
analogies with other domains: colour and texture, for
example, or for emotional associations. The vocabulary of
the core languages, by contrast, refers to objective and
measurable quantities associated with sound, such as
spectral distribution and density, and their evolution over
time. The problem is to map one set of descriptors onto
the other. The bridging of the gulf between task and core
language in sound synthesis user interfaces has been
approached in diverse ways: using techniques from artificial
intelligence [6], knowledge based systems [3,9] and by the
embodiment of metaphors derived from acoustical
mechanisms [14].

4. USER INTERFACE ARCHITECTURES
In this section, we will describe the three most common
core languages used in controlling timbre in synthesizers.
In approximate order of the complexity of associated user
interface issues, (though not necessarily their complexity
from other perspectives) they are as follows.

 Parameter selection in a fixed architecture;

 Architecture specification and configuration;

 Direct specification of physical characteristics of sound.

For purposes of exposition, and reflecting historical trends,
it is useful to begin with the second of these approaches
first: Architecture Specification and Configuration, also
known as User Specified Architecture. This approach to
specifying timbre has its origin in the interfaces of early
synthesizers, such as the Arp, Moog and EMS. In such
early synthesizers, a given sound was defined in terms of
the configuration of electronic modules required to generate
it. The hardware interface offered total control over the
choice, interconnection, and settings of these modules via
physical plugboards. Modern versions of this idea use GUI
based interfaces to accomplish similar ends.

The approach appearing first in the list above (Parameter
Selection, also known as 'Fixed Architecture’) came next
historically. This approach effectively froze selected
configurations of modules and simply allowed the user to
vary the values of parameters controlling these modules.
Different synthesizers may use quite different sound
synthesis modules from each other, but the principle
remains the same. Thus, fixed architectures present to the
user an internal model of sound which is essentially a tree
or graph structured assemblage of parameters. For the user,
the task of defining a sound is one of traversing this
structure, specifying parameters e.g. by a ‘form filling’
process. The earlier mentioned user specified architectures,
by contrast, are essentially fluid and non-hierarchical. We
will revisit both types below.

Finally, the third category of user interface for timbre
control in synthesizers is Direct Specification. First widely
introduced commercially in early Fairlight synthesizers, it
allows the user, in principle, to specify sound directly by,
for example, drawing or modifying a waveform on the
screen. This category will be described in much greater
detail below.

The next three subsections will consider each of the three
categories in more detail, describing modern interfaces from
each category. We will draw on a series of user tests
comparing the categories [12].

4.1 Fixed Architecture
As noted above, the ‘fixed synthesis’ control surfaces of
more recent hardware-based synthesizers (recall that 'fixed
synthesis' does not mean 'fixed architecture') have
standardised in recent years. Typically, there are selection
controls for preformatted sounds (known as 'programs' or
'patches'), programming controls (to change program
parameters) and mode selection controls (play, edit, etc).
Limitations on control surface space mean that controls

may be multi-functional: their usage at any given time will
be determined by the mode currently selected.

The model of sound generation used in interfaces of this
category has a static and hierarchical structure, whose
constituent parts are parameter settings defining waveforms,
envelopes, filter cut-off frequencies, etc. The task of
defining or editing a sound involves the traversal of this
structure, incrementally modifying the sound by selecting
and changing individual parameters. An example of such
an interface is that of the Yamaha SY35. The LCD
indicates no more than one parameter at a time, providing
no overall visibility of the system state. However, since
all parameters have default values, instant feedback is
available simply by listening to the current sound; the user
is able to assess the effect of the changes made; actions are
at all times reversible, and errors or ‘illegal actions’ are
impossible. Parameters are selected, and modifications
effected, in the same way throughout the structure.

4.2 User Specified Architecture
In this architecture, sound is viewed as the output of a
network of functional components - oscillators, filters, and
amplifiers. The structure of this network is fluid, and can
become quite complex. The output of any element may be
processed by one or more other elements. However, even
greater fluidity comes from the fact that the parameters of
each element, frequency, envelope and cut-off frequency,
etc, can be dynamically controlled by the output of any
other element. As already noted, early subtractive
synthesizers were in this category; the basic components
were linked by physical patch cords, and the signal path
was visible and immediately modifiable.

In hardware synthesizers, the range of sound that can be
produced is limited by the number of hardware modules
available. Software versions, however, in important
respects, have no such restrictions. One striking aspect of
the oscillator/filter/amplifier synthesis model associated
with subtractive synthesis is the fact that it has survived
the arrival of many other synthesis methods, and that its
associated vocabulary has been appropriated and applied in
software; it has in many respects become a lingua franca
for audio synthesis. (In the user study reported in [12], a
number of users were clearly confused by the apparent
absence of these modules in an interface which simply
named them differently).

Reaktor [7] is a good example of a synthesizer that
emulates and mimics in software a modular subtractive
synthesizer. Each instrument is made up of a number of
modules drawn from the subtractive/FM synthesis domain
(envelope generators, oscillators, etc). Connections between
components are made by mouse dragging. In this way, a
complex and fluid structure may be generated recursively,
i.e. instruments may be defined as assemblages of other
instruments. The interaction style used to build an
instrument is direct manipulation. It is important to
emphasise however, that the ‘objects of interest’ with
which the user engages are not representations of the sound
itself, but of the functional components required to create
it. As in the hardware equivalents, there is clear visibility

of the system state at all times, and actions are reversible.
The interaction is consistent throughout, (a given action
will produce the same result in different contexts), and the
DM style makes ‘illegal’ actions impossible. However, as
with the hardware equivalents, the user is inherently unable
to aurally evaluate the success of his/her actions until a
minimum number of connections have been made; up until
this point, there will be no sound at all.

4.3 Direct Specification
All the user interfaces examined in the previous two
sections are predicated on a model of sound as an
assemblage of components which generate or modify
sound. This assemblage, having been designed, is the
engine which generates the required sound. The following
section deals with interfaces that allow the desired sound to
be specified more directly.

Visual representation of sonic information is usually in
either the time domain (essentially a plot of the
waveform), or the frequency domain (a plot of the relative
amplitudes of the frequency components of a waveform).
The interpretation of time domain plots is, to some extent,
intuitively clear. In principle, this output expression of the
system is capable of being used to formulate an input
expression in a manner characteristic of direct manipulation
systems [2] - in this case, by the provision of tools to
‘draw’ and ‘edit’ the desired waveform. However, a user
interface for ‘designing’ sounds in any detail in this way is
hampered by the lack of any human understandable
mapping between the subjective and perceptual
characteristics of the sound in any detail and its visual
representation on screen. In practice, no user is able to
specify finely the waveform of imagined sounds in general.
In other words, there is no semantic directness [5] for the
purpose of specifying any but the most crudely
characterized sounds. The gap between core language and
task language is just as wide as in the first two categories.
To make the discussion more concrete, we will consider a
system of this category.

Sound Sampler is a package by Alan Glenns, designed for
the editing of short audio samples, and is, strictly
speaking, not a synthesizer; the waveforms and signal
processing facilities provided are too limited. However, it
illustrates our concerns well, and offers the user the ability,
to directly manipulate the envelope of the sound, by
dragging the ends of the horizontal line displayed below
the waveform to specify amplitude; the waveform is then
regenerated and redrawn. This interaction exhibits the
features of a good interface in that the system status (i.e.
the current sound) is visible at all times, actions can be
reversed, the GUI makes it difficult to make errors, and the
menus make available actions visible. As with Reaktor,
this is a direct manipulation interface. The use of the term
requires some qualification, however. Specifically, while
the interaction in Sound Sampler retains some features of
direct manipulation (visibility of the objects of interest,
incremental action at the interface, syntactic correctness of
all actions), there are important restrictions. Actions are
not necessarily reversible: editing may be destructive (at
each edit point, the modified sound replaces the previous

version). Also, the degree of control afforded is quite
limited. As noted earlier in outline, the only aspect of the
sound which lends itself to direct manipulation to any
extent is that of amplitude: there is a clear intuitive
connection between the amplitude of the waveform on the
display, and its subjective loudness; but as indicated
before, conventional waveform representations do not
convey very much information on subjective sound colour.
Thus, the user still needs to formulate the directives to the
system in system-oriented terminology: amplitude
envelopes, formant frequency bands etc. Thus, a
characteristic of a direct manipulation interface - that the
output expression of the object of interest can be used to
formulate an input expression - applies only partially here.

Comments from users who were asked, in a series of user
tests [12], to compare the interface of a ‘Fixed Architecture’
synthesizer with that of one which incorporated elements of
Direct Specification revealed a unanimous preference for the
latter.

4.4 Other Types of User Interface
The taxonomy of user interfaces for timbral control in
synthesizers identified above is not exhaustive. However,
the main other kinds of interface add little, if anything, of
principle to our argument. One such category, noted earlier,
controls a kind of synthesis called physical modelling [14].
This involves simulating, in software, physical systems
such as stretched strings. Although the mental model of
synthesis is quite different from those we have considered,
from an interaction perspective, the resultant user interfaces
are generally just examples of the parameter selection
interfaces of section 4.1, or variations of those discussed in
section 4.2. In any case, the vast majority of users do not
have the specialized knowledge to be able to map from
physical systems to timbre, consequently the arguments of
previous sections apply with similar force.

5. CONCLUSIONS
In this paper, we have analysed various user interfaces for
synthesizer timbre and identified a taxonomy of common
user interface types for this domain. A distinction is made
between user interfaces which allow visual representations
of sound to be manipulated more or less directly and those
that allow the manipulation of an architectural structure, or
the parameters of such an architecture, which generates the
sound. None of the core languages involved have been
found to map appropriately to the task language of the
musician. Further work will look at how the chasm
between the musician's task language and the available
approaches can be bridged. Issues to be addressed in further
work include:

 Empirical studies of timbre perception,

 Evolutionary design user interfaces for timbre,

 Empirical studies of how musicians describe timbres.

Other areas which suggest themselves for possible further
investigation include, firstly, the development of a 'lingua
franca' common ‘fixed architecture’ hardware interface:
given the degree of convergence that has already occurred,

this would appear to be feasible. More generally, we
propose the examination of the cognitive processes and
working methods of musicians engaged in creating and
editing sounds, in order to guide the design of user
interfaces which reflect and facilitate these processes. Any
adequate solution will need to address the gulf between
task and core language analysed above.

6. REFERENCES
[1] The CM Guide to FM Synthesis, Computer Music,

http://www.computermusic.co.uk/tutorial/fm/fm1.asp

[2] Dix A., Finlay J., Abowd G. and Beale R. (1998).
Human-Computer Interaction. Prentice Hall.

[3] Ethington R. and Punch B. (1994) SeaWave: A
System for Musical Timbre Description, Computer
Music Journal 18:1 pp 30-39.

[4] Fernandes G. and Holmes, C. (2002) Applying HCI to
Music-Related Hardware. CHI 2002.

[5] Hutchins E L, Hollan J D, Norman D A (1986) Direct
Manipulation Interfaces. In Norman D A & Draper S
W (eds) User Centered System Design - New
Perspectives of Human Computer Interaction. LEA.

[6] Miranda E. R. (1995). An Artificial Intelligence
Approach to Sound Design, Computer Music Journal
19(2): 59-75, MIT Press.

[7] Native Instruments, www.native-instruments.com

[8] Polfreman R and Sapsford-Francis J. (1995) A Human-
Factors Approach to Computer Music Systems User-
Interface Design. Proc ICMC 1995, ICMA.

[9] Pressing J. (1992) Synthesizer Performance and Real-
Time Techniques. Oxford University Press.

[10] Rolland P-Y. and Pachet F. (1996). A Framework for
Representing Knowledge about Synthesizer
Programming, Computer Music Journal 20(3): 47-58.

[11] Ruffner J. W. and Coker G. W. (1990) A Comparative
Evaluation of the Electronic Keyboard Synthesizer
User Interface, Proc. 34th Annual Meeting Human
Factors Society.

[12] Seago A. (2004). Analysis of the synthesizer user
interface: cognitive walkthrough and user tests.
TR2004/15, Dept of Computing, Open University.

[13] Shneiderman B. (1997). Designing the User-Interface:
Strategies for Effective Human-Computer Interaction.
Reading, Mass: Addison-Wesley.

[14] Smith J. O. (1992). Physical modeling using digital
waveguides. Computer Music Journal, 16,4 pp. 74-91.

[15] Thimbleby H. (2001). The Computer Science of
Everyday Things. Proceedings of the Australasian User
Interface Conference.

[16] Williges R., C Williges B. H. and Elkerton J. (1987).
Software Interface Design. In Salvendy G (ed)
Handbook of Human Factors. New York: Wiley.

