
T e c h n i c a l R e p o r t N o 2 0 0 4 / 2 4

An Example of Domain Decomposition through

Application of the Problem Frames Approach to a
Complex Problem

Jon G. Hall,
Lucia Rapanotti,

Karl Cox,
Steven Bleistein,

June Verner

14th September 2004

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

l

ISSN 1744-1986

An Example of Domain Decomposition through Application of the Problem
Frames Approach to a Complex Problem

Jon G. Hall1, Lucia Rapanotti1, Karl Cox2, Steven Bleistein2, June Verner2
1Computing Department, The Open University, UK

{J.G.Hall, L.Rapanotti}@open.ac.uk
2Empirical Software Engineering, National ICT Australia Ltd., Sydney, Australia

{karl.cox, steven.bleistein, june.verner}@nicta.com.au

Abstract

It is critical to decompose problem context of real world
problems in order to understand requirements and
specifications for IT systems. However, this is far from
trivial. In this paper, we present an example problem
domain contextual decomposition that provides a means
of ensuring high-level requirements, such as business
requirements, are met by lower-level requirements that
are closer to the software to be delivered. We use
Jackson’s Problem Frames approach to describe
organisational context, and apply Architectural Frames
(AFrames) to simultaneously decompose and simplify the
problem context and hence requirements. Through
AFrame application, and problem decomposition and
projection, we show how socio-technical elements can
also be described in our solution. We validate our
approach through a case study taken from the literature
of Seven-Eleven Japan.

1. Introduction

Ideally, the software process has two components: the
part that ends with the identification of the requirements
that a system should meet – requirements engineering –
and the development of software from those requirements
– software development. A perennial problem in software
engineering is the linking of these two components, i.e.,
in making the move from the discovery of requirements to
the development of software. As identified elsewhere [1]
there are a number of factors that prevent easy linkage.
1. Requirements will change during the lifetime of a

software development project; this makes the process
much more complex than it would be if there was a
simple linkage.

2. Requirements engineering is typically constrained by
domains that are very far from the technology used to
develop the software. In the words of [2]
requirements are often very far from the machine.
Some way must be found to translate them so that
they will be able to be applied at a technological
level; however, for consistency, we must always be

able to trace between the various levels of
requirements expression.

3. Requirements engineering provides choices that the
form of solutions may take and which need to be
resolved both to explicate the solution, and to
determine lower-level requirements. This point is
related to point 2 above.

4. There is often a need to consider the design or
redesign of other, non-computing components of a
solution; for example, solutions to organisational
problems often involve changes in the roles and
competences of employees. In software engineering
terms, the solution has both human and technological
parts: the solution is socio-technical in nature.
Treatment of the socio-technical factors better links
requirements engineering and software development
to provide an optimal solution.

In this paper we show how an extended problem
frames framework can be used to address the second,
third and fourth problems of software engineering as
described above. We do not describe here work that
extends the problem frames framework to address issue
(1). We describe in detail, in section 2 below, our
proposed extensions to the problem frames framework;
these extensions remain faithful to the original
foundations of this framework.

There are many published studies of problem frames.
As noted in section 2 and also as reported in [3] these
studies, with the exception of [4-6], either describe simple
theoretical case studies, or small, well understood,
classical software engineering exemplars. The
contribution of this paper is to show how problem frames
can be usefully applied in describing complex real-world
problems. We exercise the extensions we have defined by
showing, through a case study, how IT in support of an
organisation’s strategy for supply chain management may
be developed. The case study is based on Seven-Eleven
Japan’s e-business system (for example, see [4-6]).

The paper is organized as follows. Section 2 provides
background information on Problem Frames. Section 3
discusses Architectural Frames. Section 4 presents the

case example. Section 5 provides an evaluation and
section 6 presents some conclusions.

2. Problem Frames

Problem Frames capture and classify software
development problems [2, 7]. A Problem Frame structures
the analysis of the problem within its problem space. It
describes what is in the Real World and how the software
is intended to change or guarantee real-world conditions
in accordance with the requirements. The Problem
Frames approach uses an understanding of a problem
class to allow the “problem owner” with his or her
domain knowledge to drive the requirements engineering
process by selecting the appropriate development method
to solve the problem type. As such Problem Frames are
akin to design patterns [8] in that they provide a
recognised problem pattern that has a known solution
method. However, Problem Frames differ from design
patterns in that they represent real world phenomena, as
opposed to software solution phenomena.

Fig. 1 illustrates some essential elements of the
original Problem Frames model. The Real World Problem
Context provides us with information about the structure,
processes and tasks that are already true of the problem
domain. The Requirement states which properties we
wish to be true in a software solution to be built, the
Machine which will work within its real world context.
The connection between the real world problem context
and the machine is represented by the shared phenomena
at the boundary between the problem and the machine.
Shared phenomena can be data, events, commands and
states. For most software problems there will be a number
of domains of interest. The requirement can connect to a
domain of interest in two ways. An arrowhead indicates
that the domain is constrained by the requirement. That is,
the machine must guarantee that the state or behaviour of
that domain satisfies the requirement. A requirement
reference, with no arrowhead from requirement to
domain, indicates that the requirement refers to some
phenomena in that domain [2].

Fig. 1. Elements of Problem Frames
 Jackson describes two moods, in the grammatical

sense, to represent the problem context and the
requirement [2]. Indicative mood represents everything in
the problem context that is given and will remain
unaffected by the solution. Optative mood represents the
way we would like everything to be, given the
construction of the solution. This is the requirement. A
requirement can change the properties, states and

behaviours of domains of interest but cannot affect
indicative properties. In this way, we can get three
descriptions: the problem context; the requirement, i.e.,
all that we would like the solution to bring about in the
problem context; and the specification, which describes
the shared phenomena between the problem context and
the solution that achieves the requirement.

Relating problem context, requirement and solution
specification is a correctness argument that is constructed
during the development of a solution. The correctness
argument ensures that, to some level of certainty, when
placed in the problem context, the specification will work
to ensure the requirements.

A problem diagram, containing the same elements as
in Fig. 1, describes a software problem showing the
problem parts consisting of problem context and the
requirement. Problem Frames are derived through
decomposition of problem diagrams. Even though the
software/hardware system may consist of multiple
devices or computers, for the purpose of a problem
diagram these are represented as a single machine.
Decomposing problem diagrams reveals an increasing
level of detail, including separate distinct machines.

The original Problem Frames framework uses two
problem transformations, illustrated in figure 2:
a. A divide and conquer approach to solve problems: a

large problem diagram is projected onto simpler sub-
problems, under a correctness preserving
recomposition constraint to ensure that sub-problem
solutions can be recomposed in non-antagonistic
ways.

b. The progression of problems transformation in which
high-level requirements – those far from the solution
– are refined to levels of abstraction closer to the
machine. Detail of the induced requirement
refinement is not given by Jackson in [2]. However,
it is addressed by Bleistein et al in [4-6]. Note that we
do not address this concern here due to page length
limitations.
Each of these transformations preserves the problem

to be solved – more plainly, any solution that can be
arrived at through application of the transformations to a
problem will remain a solution to that problem. Although
complete for solving problems, projection and
progression of problems transformations are not, by
themselves, complete for modern software development.
Neither transformation allows the construction of partial
solutions, such as are the basis of the architectural
business cycle (ABC) [9], and that lead to negotiation
with the customer about trade-offs of non-functional or
quality requirements. ABC would require an exploration
of the high-level structure of the machine, i.e., the
introduction of new domains to represent possible
solution components that have no place in a customer’s
view of a problem.

a) b)

Figure 2 –Transformations: a) Projection; b) Problem progression (adapted from [2])
The original problem frame framework works with

software problems. To this end, it contains a single target
for design – the machine domain – the decorated
rectangle of Figure 1 that ‘stands’ for the solution.

In the extended problem frame framework of this
paper, we work with three problem-preserving
transformations. Alongside projection and problem
progression we add AFrame expansion and we expand
projection to include guided sub-problem discovery, as
introduced in [10, 11]. These are detailed in section 3. In
addition, we expand the types of targets for design that to
which we can refer in a problem diagram. In addition to
machine domains, we introduce knowledge domains [12]
and organisational domains.

A knowledge domain represents a solution (part) that
requires some form of human flexibility – training, for
instance, extra competences or knowledge – to be
designed as part of the solution. An example that we use
in this paper is the training that a store clerk will need to
be able to operate a Point of Sales system. An
organisational domain represents parts of an organisation
that will need to be designed to solve an organisational
problem. We show how the business problem of supply
chain management has an organisational solution.
Organisational solutions typically consist of human
resources and machines working together, and we will
show how AFrames can be used to transform
organisational problems into problems involving
machines and people.

3. AFrames and Socio-Technical Solutions

Problem frames on their own are neither completely
adequate nor appropriate for addressing concerns of
socio-technical and organizational IT systems. Related
work on Problem Frames has focussed on identifying
what techniques are most useful to eliciting and
documenting requirements and specifications once the

Problem Frame is known [13, 14] and in exploring the
role Problem Frames have with aspects of software
architecture [11, 15]. Research has extended and
expanded problem frames to address different types of
concerns including those for geographic applications [16],
system security [17], simulator systems [18], extreme
programming [19] and business process modelling [20].
None of this research presents particularly complex
examples that require a high degree of decomposition to
get to a problem frame i.e. the problems described are
very close to the machine or refer to the machine itself.

Architectural Frames (AFrame) guide sub-problem
discovery, the third transformation in our extended
Problem Frames framework. As such, they form a new
element of the Problem Frames framework [11]. The
intention of AFrames is to provide a practical tool for
sub-problem discovery (and subsequent recomposition of
solutions) that allows the Problem Frames practitioner to
separate and address in a systematic fashion, the concerns
arising from the intertwining of problems and solutions.
The rationale behind AFrames is the recognition that
known solution structures can be usefully employed to
inform problem analysis.

An AFrame captures the combination of a class of
problems and a class of solution structures. We focus here
on the combination of solutions to a class of problems
that arise from observed good practice; other possibilities
for guiding solution structures include software
architectures, for instance. There are many ways in which
good practice is captured in the literature; many
international standards, for instance, can be seen as the
documentation of good practice. The characterisation of
good practice is achieved through decomposition
templates, which form an integral part of every AFrame
definition. Decomposition templates capture a way of
decomposing a problem into sub-problems; they
complement classical Problem Frames decomposition by
providing guidance and decomposition rules. In Figure 3,

we illustrate AFrame expansion and guided sub-problem discovery.

a) b)

Figure 3: a) AFrame expansion and b) Guided Sub-problem discovery
AFrame expansion works by allowing known (or

postulated) structure to be added as solution. Figure 3a
shows how the domain MA is restructured through
AFrame expansion as a given (solution) domain DB,
together with solution component MB and MC that
remain to be designed. Such structure often arises with
the use of software architectures that, through AFrame
expansion, can be chosen for application when known to
be appropriate as a solution in a problem that fits the
general form of RA and DA. Note that the original
machine domain MA remains in the transformed diagram;
this occurs because a problem diagram is required to have
only a single designable solution domain, and AFrame
transformation may introduce any number of such
domains – the dotted original reminds us of the original,
single design target.

In contrast, guided sub-problem discovery identifies
sub-problems in an AFrame expansion that are proper
problem diagrams. It does this by producing as many sub-
problems from an AFrame expansion as there are
designable solution domains therein. In Figure 3b, for
instance, MB and MC are each given their ‘own’ problem
diagram in which each is the sole target for design, the
other being assumed part of a refined problem context.
Solutions to these separate problem diagrams will later be
recomposed (under a correctness argument that forms part
of the original problem frames projection transformation)
to produce the whole solution. In adding domains to the
original problem context, guided sub-problem discovery
may appear to introduce domains about which nothing is
known, and in the worst case this will, indeed, be the case
– in Figure 3b, for instance, all we know about domain

MC (in the top sub-problem) which forms part of the
context of the solution domain MB is that it is named
MC. However, the context of guided sub-problem
decomposition is AFrame expansion, and it is likely that,
either:
• MB and MC are components that can be designed

separately; or
• There are further AFrame transformations to be

applied in the second sub-problem that will inform
the structure of MC in the top sub-problem.

4. Example: Seven-Eleven Japan

In this section we will show how knowledge of good
practice in the retail domain leads us through an
exploration of a possible solution for this problem. Good
practice is coded as a sequence of AFrames; it derives
from the very successful Seven-Eleven Japan (SEJ) retail
convenience store, which we represent as a collection of
AFrames, applied in sequence, that – in this case study –
lead to simpler problems. We rely on a number of
literature sources that describe this case in detail [21-26].

4.1. Seven-Eleven Japan as an AFrame

SEJ manages a national network of convenience stores
and generates value by leveraging and controlling
ownership of information to optimize efficiency across a
value chain. SEJ actually owns very few physical assets.
The company positions itself in the centre of a value
chain that includes manufacturers, distributors, third-party
logistics partners, and franchise shops, all of whom are

independently-owned companies, yet all of whose
objectives are maximizing throughput of products
ultimately sold to franchise shop end-customers. SEJ’s
macro-level business model includes the participants
mentioned above and their shared phenomena in terms of
transactional flows of money, information, and products,
based on the description of e-business models appearing
in [24]. Figure 4 gives a representation of SEJ as an
organisational AFrame: it is organisational, as the
solution is the application of a business strategy to an
organisation.

Both Franchise Store and Head Office are
organisational (sub-)domains within the SEJ organisation.

Although SEJ does not own the franchise stores, and as
such has no direct contact with the customers, the SEJ
business model prescribes very precisely how franchise
stores should conduct their business. In particular, SEJ
bases its strategy for competitive advantage on an
extremely high level of competency at anticipating
consumer purchases store-by-store, item-by-item, hour-
by-hour, and then providing customers with products they
want when they want them. SEJ’s strategy leverages
information technology to accomplish its strategic
objectives.

Figure 4. The SEJ AFrame
SEJ’s ownership of information enables sophisticated

supply chain management to reduce inventories, lower
costs, and increase sales. SEJ moves information
between itself and its partner companies via an ISDN
network. To better understand customer demand, SEJ
actively gathers and analyses purchasing information in
real time, and correlates this with other social and
environmental factors, including neighbourhood
demographics, planned local events like festivals, and the
weather. SEJ then uses a highly acute just-in-time
delivery system to meet that demand generating
remarkable value.

As one of the main advantages of AFrames is guided
decomposition, based on the SEJ business model, the SEJ

AFrame of Figure 4 leads to the two organisational
(sub)problems of Figure 5, corresponding to the design of
a 7/11 Franchise Store (part a) and the 7/11 Head Office
(part b). In Figure 5a, POS stands for Point Of Sale, a
system that monitors customers’ purchases, while GOT
for Graphical Order Terminal, a device which allows the
Clerk to track and report on sales and shop stock levels;
the weather station broadcasts information about weather
conditions within a 20km range. Note how the Head
Office becomes an (ordinary) given domain in the
Franchise Store sub-problem, and the Franchise Store
becomes an (ordinary) given domain in the Head Office
sub-problem.

a)

b)

Figure 5. The two SEJ organisational sub-problems: a) the Franchise Store sub-problem; b) the Head
Office sub-problem.

The Franchise Store sub-problem consists of four
targets for design: the Clerk, a knowledge domain, the
Store Computer, the Graphical Order Terminal (GOT)
and the Point of Sale System (POS). Through sub-
problem projection we reach the problem diagrams of
Figure 6.

4.2 Problem transformations

The relation between the problems described in the
previous section is illustrated in Figure 7. The relation
between Problem 1 and Problem 2 is through the
application of the SEJ AFrame to the original business
problem, top left-hand diagram in Figure 8. From this
follows a decomposition into the Franchise Store problem
(Figure 7, problem 2a, and described in the detail in
Figure 6) and the Head Office problem (Figure 7,
problem 2b): these provide a structure to the
organisational solutions derived from the SEJ business
model. Finally, solution structures at this level lead to

further problem decomposition of the Franchise Store
problem into a number of constituent sub-problems.

We describe how the two transformation types apply
within the SEJ AFrame, from the original problem down
to, say, the sub-problem of designing the GOT of the
franchise store. In Figure 8, from the original problem an
AFrame expansion adds structure to the Organisational
domain. A further AFrame expansion is then applied to
the Franchise Store, which now becomes the subject of
design. At the same time the Head Office domain goes
out of scope of design and becomes a given domain in
this subproblem. A subsequent problem progression
allows us to eliminate the Supplier (still relevant, but far
from the machine in this sub-problem) and factor it within
the new requirement. The transformation continues to
where GOT is now the object of design, so all other
solution domains become given in the sub-problem. At
the lowest level in Fig. 8, the Clerk operates the GOT,
which sends inventory data to the Store Computer to pass
onto SEJ in real time. We can, though, decompose this
problem diagram further to reach a problem frame.

a) the Clerk sub-problem (Problem 2a.i)

b) the Store Computer sub-problem (Problem 2a.ii)

c) the GOT sub-problem (Problem 2a.iii)

d) the POS sub-problem (Problem 2a.iv)
Figure 6. Further sub-problem decomposition

Figure 7. Relations between problems

Figure 8. A complete problem transformation from the original problem diagram to that for the
Graphics Order Terminal (GOT)

Once we have reached the lowest decomposition in
Figure 8 we can progress from there to problem frames.
Figure 9 provides an example of a variant frame, a
Commanded Information Display frame [2]. The
requirement stipulates that the Clerk be able to interrogate
the GOT about the current inventory available in the store
and also to update inventory when a delivery might
arrive. This is a variant frame because we found it made
little sense to describe an Information Display frame
without an operator, in this case the Clerk. Such
abstraction in this problem would remove a degree of
context that brings understanding in addressing SEJ’s
requirements.

Fig 9. Commanded Information Display Frame

5. Evaluation

We have expanded the collection of problem
transformation tools that exist within the problem frames
framework. The new tool is that of guided problem
decomposition that allows known solution structures to be
used to guide problem exploration, decomposition and
subsequent recomposition. Structurally, the original
problem frames tools are incomplete in that they do not
provide for the use of known solution structures – a
technique known to aid problem analysis. Guided
AFrame expansion, on the other hand, does allow known
solution structures to be used, and so properly extends the
problem transformation tools available to the problem
frame practitioner.

Whether the new tools are complete in some sense is
unknown, but worthy of investigation. The syntactic
nature of problem transformation could point to
completeness being characterised in that all possible
manipulations are possible; indeed, we may postulate that
it is complete simply because an AFrame can represent
arbitrary solution structures.

There are, however, some validity threats with our
work. One threat is the realism or otherwise of the
example. We argue that this is a well-documented case,
taken from numerous sources in the literature. Hence, our
view of the SEJ problem is taken from that of
industrialists, including SEJ’s CEO, as well as of leading
academics. We can thus draw on a number of informed
views on aspects of the case. It is also the case that
providing examples of our approach through, for
example, an ATM, a defacto standard of the requirements
engineering research community, a sluice gate or simple
traffic lights controller, regularly cited ‘exemplars’ of the
problem frames community, would defeat the point of our
paper, that of providing a realistic example of problem
domain decomposition using the problem frames
approach.

The whole approach to problem description can be
compared to standard object-oriented analysis (OOA).
However, there are some differences. The most obvious
one is that we do not describe concepts or programming
concerns in our analysis. OOA does this as a matter of
course. We only describe physical, real-world entities that
have nothing to do with how we design the system. This
is difficult to avoid when doing OOA. Though some
proponents suggest that OOA really does describe the real
world problem domain as it is, they typically provide
examples that are about programming. For instance, Kaidl
presents what he describes as an entirely problem domain
OOA diagram of an ATM, which includes a class entitled
Cash Notes with program-oriented attributes of on_hand
and dispensed [27] – how does a cash note know whether
it is on hand or it has been dispensed? That’s something
for the ATM itself or the cashier to decide. Thus, Problem
Frames distinguishes itself by focussing on real problem

domain elements that bear no relationship to
programming.

We understand that it makes no sense to ‘design’ a
human user of a machine and we are well aware that
employees receive training to use the machines to do their
work. However, we assert that it is critical for employees
to be aware of exactly what their job entails and, even
more significant for us, as engineers, that developers be
very aware of the role of employees like Clerks have in
the success or failure of the entire business. As an
example, the Clerk is expected to record each Customer’s
age and gender at each transaction. This information is
used by SEJ to implement its strategy for competitive
advantage – providing the Stores customers with the
goods they want when they want them. SEJ examines
each sales transaction and customer profile on a real-time
basis to understand the demographics and customer
purchase patterns of the catchment area for each store. If
this requirement is not implemented correctly on the
machine, or the Clerk does not do his job properly, then
the risk of failure is high. Without a detailed domain
decomposition of the problem, in terms of domains and
requirements, providing traceability from the business
strategy to low-level requirements, this potential show-
stopper might get overlooked. An example of the ability
to overlook critical business requirements is presented by
Arlow, who reports that a multi-million dollar business
requirement of plane sharing between airlines on booking
systems was reduced to a multiplicity asterisk in a UML
class diagram [28].

We make a number of claims about requirements in
this paper without providing much information about
requirements de- and re-composition. Unfortunately,
space does not allow anything but a cursory and over-
simplified discussion. Since we do not wish to fall foul of
over-zealous abstraction, we direct readers to other papers
that provide full details on requirements decomposition
[4-6].

6. Conclusions

We show how the Problem Frames approach can be used
to describe complex, real world problem contexts. It is
possible to capture high-level requirements and context
for business problems and through problem domain
decomposition, trace the business problem to the software
problem. We do this through Architectural Frame
decomposition, combining the ideas of projection and
divide-and-conquer of problem domain decomposition.
We show how to describe socio-technical domains and
highlight the importance of describing this domain
explicitly.

As we have shown in this paper, AFrames can
represent good practice. The application of good practice
does at least three things:

• it shortens development times
• it leads to confidence that a solution is fit-for-

purpose; other fit-for-purpose solutions have,
presumably, been based on such good practice, by
definition;

• it would allow the developer to focus on the analysis
of the unique characteristics of the problem – those
elements that require bespoke solutions – and to
solve the associated sub-problems having properly
established the structures into which those bespoke
solutions fit.

The risk of missing what may appear to be
inconsequential requirements, in fact, may lead to serious
financial problems and even outright failure of
organisations. The ability to explicitly show the
connection from high-level business models to low-level
problem frames through problem domain decomposition
is critical for businesses like that described in this paper
to succeed.

References

1. Nuseibeh, B., Weaving Together Requirements and
Architectures. IEEE Computer, 2001. 34(3): p. 115-117.

2. Jackson, M., Problem Frames. 1st ed. 2001: Addison-
Wesley Publishing Company. 368.

3. Cox, K., J. Hall, and L. Rapanotti, 1st International
Workshop on Advances and Applications of Problem
Frames - Summary. Software Engineering Notes, 2004.
29(5): p. To Appear.

4. Bleistein, S., K. Cox, and J. Verner. Problem Frames
Approach for e-Business Systems. in 1st International
Workshop on Advances and Applications of Problem
Frames. 2004. Edinburgh: IEE.

5. Bleistein, S., K. Cox, and J. Verner. Requirements
Engineering for e-Business Systems: Integrating Jackson
Context Diagrams with Goal Modelling and BPM. in
APSEC 2004,11th Int. Asia-Pacific Software Engineering
Conference. 2004. Busan, Korea: IEEE Comp. Soc.

6. Bleistein, S., K. Cox, and J. Verner. Modelling Business
Strategy in e-Business Requirements Engineering. in
eCOMO’2004, 5th International Workshop on Conceptual
Modelling Approaches for e-Business. 2004. Shanghai,
China: LNCS.

7. Jackson, M., Software Requirements and Specifications.
1995, Harlow: Addison-Wesley.

8. Gamma, E., et al., Design Patterns: Elements of Reusable
Object-Oriented Software. 1995: Addison-Wesley.

9. Bass, L., P. Clements, and R. Kazman, Software
Architecture in Practice. 2003: Addison Wesley.

10. Hall, J. and L. Rapanotti, Problem Frames for Socio-
Technical Systems, in Requirements Engineering for
Sociotechnical Systems, J. Mate, Silva, A., Editor. 2004,
Idea Group, Inc.

11. Rapanotti, L., et al. Architecture-driven Problem
Decomposition. in The 12th IEEE International
Requirements Engineering Conference (RE'04). 2004.
Kyoto, Japan: IEEE.

12. Brier, J., L. Rapanotti, and J. Hall. Problem Frames for
Socio-Technical Systems: predictability and change. in 1st
International Workshop on Advances and Applications of
Problem Frames. 2004. Edinburgh: IEE.

13. Bray, I., An Introduction to Requirements Engineering. 1
ed. 2002: Pearson Addison Wesley.

14. Kovitz, B., Practical Software Requirements; A Manual of
Content and Style. 1999: Manning.

15. Hall, J., Jackson, M., Laney, R., Nuseibeh, B., Rapanotti,
L. Relating Software Requirements and Architectures using
Problem Frames. in RE'02. 2002. Essen, Germany: IEEE
Computer Society Press.

16. Nelson, M., D. Cowan, and P. Alencar. Geographic
Problem Frames. in Symposium on Requirements
Engineering. 2001. Toronto, Canada.

17. Lin, L., et al., Analysing Security Threats and
Vulnerabilities Using Abuse Frames. 2003, Open
University Computing Dept.

18. Bray, I. and K. Cox. The Simulator: Another Elementary
Problem Frame? in 9th International Workshop on
Requirements Engineering: Foundation for Software
Quality - REFSQ'03. 2003. Velden, Austria: Essener
Informatik Beitrage.

19. Tomayko, J. Adapting Problem Frames to Extreme
Programming. in XP Universe Conference. 2001. Raleigh,
NC.

20. Cox, K. and K. Phalp. From Process Model to Problem
Frame. in 9th International Workshop on Requirements
Engineering: Foundation for Software Quality -
REFSQ'03. 2003. Velden, Austria: Essener Informatik
Beitrage.

21. Bensaou, M., Seven-Eleven Japan: Managing a Networked
Organization. 1997, INSEAD Euro-Asia Centre.

22. Rapp, W.V., Retailing: Ito-Yokado Seven-Eleven Japan, in
Information technology strategies : how leading firms use
IT to gain an advantage. 2002, Oxford University Press:
New York. p. 163-186.

23. Whang, S., et al., Seven Eleven Japan (GS18). 1997,
Stanford University Graduate School of Business.

24. Weill, P. and M. Vitale, Place to Space: Moving to
eBusiness Models. 2001, Boston: Harvard Business School
Publishing Corporation.

25. Kunitomo, R., Seven-Eleven is Revolutionising Grocery
Distribution in Japan. Long Range Planning, 1997. 30(6):
p. 887-89.

26. Makino, N. and T. Suzuki, Convenience Stores and the
Information Revolution. Japan Echo, 1997(Spring): p. 44-9.

27. Kaindl, H., Is object-oriented requirements engineering of
interest? Requirements Engineering Journal, 2004. to
appear.

28. Arlow, J., Use Cases, UML, Visual Modelling, and the
Trivialisation of Business Requirements. Requirements
Engineering Journal, 1998. 3(2): p. 150-2.

