

ISSN 1744-1986

T e c h n i c a l R e p o r t N o 2 0 0 6 / 0 7

Problem transformations in solving the Package Router
Control problem

Dr Lucia Rapanotti
Dr Jon Hall

Michael Jackson

5th July 2006

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

Problem transformations in solving

the Package Router Control problem

Lucia Rapanotti Jon G. Hall Michael A. Jackson

Centre for Research in Computing

The Open University

{L.Rapanotti, J.G.Hall}@open.ac.uk, jacksonma@acm.org

July 4, 2006

Abstract

The paper describes a problem analysis, from early requirements through to design, to devise a controller

for a package router. The analysis is based on the representation and systematic transformation of the problem

and its parts. The intent of the paper is to provide an example of detailed and systematic analysis by using a

problem-oriented approach that brings together ideas from the original problem frames approach with subsequent

elaboration and extensions by the authors.

1 Introduction

Problem-oriented approaches to Requirements Engineering (RE) are gaining interest as a way of developing the re-

quirements for software intensive systems. The foundations of problem-oriented RE have been laid over a number

of years [16, 17, 18], problem frames [18] being the most complete presentation. Problem-oriented RE encourages

the developer to focus on developing their understanding of a problem first, avoiding premature software design

and implementation. In this view, a problem is seen as a requirement in a real-world context for which a soft-

ware solution is sought. The process of requirements analysis is then seen as a problem solving process, leading

ultimately, in hope, to a software specification which can be argued to satisfy the requirement in its context.

The approach is gaining popularity (see [7] for an overview of recent research and practice) and complements

other approaches in RE such as goal-oriented [38, 37] and scenario-based [33, 1, 6] ones. Most current research

into problem-oriented RE is based on problem frames.

Problem-oriented RE has many advantages. It has a principled basis [39, 10, 13], which allows for adequacy

argumentation and rich traceability [14] from requirements to specifications. It embodies a discipline of descrip-

tions [19] for the capture of the relevant properties of the real-world context, while being sufficiently flexible to

allow for informality [12]. It supports reuse of expertise through the identification of recurrent problem classes

[18]. However, it suffers from being difficult to combine with models of software system development that iterate

between problem and solution domains. For instance, Bass, Clement and Kazman observe that early trade-offs

between qualities need to be made if a system architecture is to be chosen, with that choice of architecture being

1

a driver in the way in which the system’s requirements can be further determined. Other authors [22, 35, 29, 13]

make similar observations.

In previous work of the authors, explicit consideration has been given to problem and solution spaces as ‘equal

partners’ in software engineering [12, 4, 31, 11]. This view raises the issue of which is the most appropriate

way to relate them and has lead us to the developments of a conceptual framework for problem-oriented Software

Engineering (SE) [12]. The framework is a reflection of the fact that SE includes the identification and clarification

of system requirements, the understanding and structuring of the problem world, the structuring and specification

of a hardware/software machine that can ensure satisfaction of the requirements in the problem world, and the

construction of adequacy arguments, convincing both to developers and to customers, users and other interested

parties, that the system will provide what is needed.

Note that these activities are much concerned with non-formal domains of reasoning: the physical and human

world, requirements expressed in natural language, the capabilities of human users and operators, and the identifi-

cation and resolution of apparent and real conflicts between different needs. In a software-intensive system these

informal domains interact with the essentially formal hardware/software machine: an effective approach to system

development must therefore deal adequately with the informal, the formal, and the relationships between them.

As Turski has pointed out [36]:

There are two fundamental difficulties involved in dealing with non-formal domains (also known as

the real world):

1. Properties they enjoy are not necessarily expressible in any single linguistic system.

2. The notion of mathematical (logical) proof does not apply to them.

These difficulties, which are well known in the established branches of engineering, have sometimes led to a

harmful dichotomy in approaches to software development: some approaches address only the formal concerns,

usually in a single formal language; others address only the informal concerns, using several, often incommensu-

rable, languages. The aim of the framework proposed in [12] is to bring both non-formal and formal aspects of

software development together in a single framework. The framework is intended to provide a structure within

which the results of different development activities can be combined and reconciled. Essentially the structure is

the structure of the progressive solution of a system development problem; it is also the structure of the adequacy

argument that must eventually justify the developed system. The framework does not prescribe any particular

development process, but rather identifies discrete steps of development and their connections, which may be

accommodated within the chosen development process.

In this paper we provide an example of a detailed and systematic development of a problem based on the

proposed framework. The problem is drawn from the literature, but the analysis presented here is new. The

notation adopted for problem representation is largely that of problem frames rather than the formal notation of

[12], and we assume that the reader is familiar with this notation.

2

2 The Problem-oriented framework

The framework of [12] can be regarded as the definition of a Gentzen-style sequent calculus [21] for manipulating

software problems, with sequents representing problems rather than the traditional logical statements. The basis

of a Genzten-style sequent calculus is a sequent. A sequent is, simply, some well-formed formula which in the

framework defines a problem. The point of a sequent is to have it transformed into another sequent that is, in some

sense, easier to work with, or will lead to something that is easier to work with. The point of the Genzten system

is to provide (always sensible) manipulations of sequents; many useful logical systems – such as the propositional

calculus, natural deduction, predicate calculus – have Gentzen-style sequent encodings with useful properties, such

as being amenable to computer supported transformation (for instance, [3, 8, 2, 5]). In the framework the sequents

represent problems, and that is what we manipulate. Hence, the aim of the framework is to allow the description of

problems as sequents and to characterise the sensible manipulations of problems. In the remainder of this section

we recall the main elements of the framework.

2.1 Software problems

A (software) problem is regarded as a requirement in a real-world context. A context is a set of (possibly) inter-

acting domains (D1, . . . ,Dn) described in terms of their indicative properties; each domain encapsulates a part of

the real-world which is of interest in the problem; a requirement (R) is a statement of what we would like to be

true of the context given a solution to the problem, i.e., an optative statement. A solution (S) is simply a domain,

representing a machine whose behaviour is constrained by a developed program, and that solves the problem by

interacting with other domains. Interactions between domains is through shared phenomena, which are either con-

trolled or observed by each domain. Thus, a software problem challenges us to find the solution that, in the given

context, guarantees satisfaction of the requirement.

Within a problem representation, a domain description indicates the possible values and/or states that a domain

can occupy, how their values change over time, and which events may occur and when. Such a description is in

terms of the domain’s private phenomena and those it shares with other domains. Given a domain D , its sets of

phenomena are indicated as D(p)co , where d is the set of its private phenomena, c, the set of phenomena D controls

and shared with other domains, and o the set of phenomena that D observes, but are controlled by other domains.

A phenomenon is controlled exactly by one domain; a decoration is omitted when the corresponding set is empty.

A requirement description indicates the values or states that that a domain should occupy, how their values should

change over time, which events should occur and when. Such a description is also in terms of phenomena, which

the requirement description either referred to or constrains. In formal notation, we write Rcons
ref to indicate that

cons is the set of phenomena constrained by R and ref the set of phenomena referred to by R. Again, decorations

are omitted when corresponding sets are empty.

Hence a problem is represented in the framework as the sequent:

D1(p1)c1
o1, . . . ,Dn(pn)cnon ,S cs

oS ` Rcons
ref

where ` indicates entailment. By convention, the problem solution S is always positioned immediately to the

3

left-hand side of `.

Conceptually, this view of a problem is shared by problem frames, and in this paper we will adopt the problem

frames notation of context and problem diagrams for the representation of problems, rather than the formal notation

of [12] just described. For instance, given the following problem, its corresponding problem diagram is given in

Figure 1:

Operatoron,off ,Device(Stopped ,Working)a on,a off ,Controllera on,a off
on,off ` Obey commandStopped,Working

on,off

There are slight differences between the two notations. In problem frames, the ‘!’ sign indicates control:

in Figure 1, O !{on, off } indicates that the operator (shortened to O) controls (in this case issues) commands

on and off . We abuse the notation slightly by using the same sign to identify phenomena constrained by the

requirement: in the figure, !{Stopped ,Working} indicates that the (private) states of the device are constrained

by Obey command. In problem frames notation, the sharing of phenomena between two domains is indicated by

a line which links the (boxes representing the) domains, annotated by the phenomena which are shared, with an

indication of which domain controls them. In the formal notation, this is achieved by stating explicitly both sets

of controlled and observed phenomena for each domain. Also, private phenomena are not represented explicitly

in problem frames notation, unless they are referred to or constrained by the requirement, while they are always

stated in the formal framework as part of the decoration of a domain.

O!{on, off}

C!{a_on, a_off}

Obey
command

{on, off}

!{Stopped, Working}
Device

Operator

Controller

Figure 1: Example of problem frames notation

The language in which a domain or requirement description is written is not prescribed: all is asked is that

meaning1 can be assigned to statements in the language. Indeed, it would be typical for different stake-holders to

have different languages for expressing their understanding of domain descriptions and requirements. Also, there

is no assumption of precision or lack of ambiguity in any description; a floor manager’s description of a press that

appears in a manufacturing plant might simply be:

The press was installed three years ago.

Through descriptions, understanding of a domain and/or requirement is transferred between customer and de-

veloper; for instance, a developer working on the design of a press controller might interpret the floor manager’s

statement as identifying the press as the PVert model. The mechanisms of interpretation are complex, ranging

from “guessing” to “knowing,” and may be influenced by other factors, such as experience or direct inspection of

the press. Interpretation is more or less precise too, and is often in need of validation through, for instance, contin-

ued interaction between the stake-holders as development proceeds. The mechanisms by which such interaction

1I.e., some formal or informal understanding.

4

is conducted are important, but not part of the framework, which makes use only of the outcomes of it, when they

serve as justification of the steps taken towards solution.

2.2 Solutions and adequacy arguments

A software solution is simply a domain that solves a problem. Its description can take many forms, including

specifications relating inputs to outputs, or detailed program code in some programming language.

In parallel with, or perhaps following somewhat behind, the search for a solution is the construction of an argu-

ment that justifies the fitness-for-purpose of a found solution with respect to the problem. Actually, the argument

the developer will have to construct expresses the adequacy of the solution with respect to a number of criteria

including those of fitness-for-purpose as a customer might see it, design rationale, traceability and trade-offs. The

construction of the adequacy argument is step-wise, and follows the application of problem transformations. We

will illustrate how an adequacy argument is built in the development of the case study.

2.3 Problem Transformations

Problem transformations capture discrete steps in the solution process. Many classes of transformations are recog-

nised in the framework, reflecting a variety of practices reported in the literature or observed elsewhere.

For instance, one type of transformation, called problem reduction, captures the idea of transforming problems

which appears in [18, Page 103]. There, a transformation of requirements keeps a problem’s solution invariant

while domains are removed from the problem. More recently, Hall and Rapanotti et al. [12, 32], Li et al. [27, 28],

and Seater et al. [34] have explored what the detail of such transformations would look like. Indeed transformations

of requirements to derive specifications are not limited to problem-oriented approaches: in goal-based approaches,

for instance [38, 37], high-level goals, which may be regarded as requirements deep in the world, are successively

decomposed and refined until technical requirements are specified for a machine to satisfy. Similarly, in scenario-

based approaches [33, 1, 6] refinement is often required in the move from from high-level scenarios, often capturing

business processes within an organisation, through to low-level scenarios expressing the direct interaction between

a software system and its actors.

Another source of problem transformations is the consideration of solution architectures during the analysis

process. As already mentioned, in problem frames, with their focus on the problem domain, the choices available

to the developer are those that exist in the problem domain, and so useful solution notions, such as architecture, are

only implicit. Hall et al. add a notion of architectural service [11] and Rapanotti et al. [31] a notion of architectural

decomposition into problem frames to allow solution options to be explored. The framework simultaneously gen-

eralises and simplifies these earlier approaches through the definition of a basic rule, called architectural expansion

that allows the solution space structure to influence the problem space.

Problem transformations transform descriptions and their interrelations as problems in a way that respects

solution adequacy. This does not mean that in the framework transformations are sound in any formal sense — the

informality of the subject matter precludes fully formal treatment of some transformations. The meaning of ‘sound’

here is not necessarily ‘formal’, or ‘formalisable’, although it could be the case that formality is appropriate; instead

soundness is fitness-for-purpose of a solution. A Justification of sound application obligation (shortly, justification)

5

is therefore attached to each problem transformation. An adequacy argument is then a by-product of the sequence

(linearization of a tree) of problem transformations that are the designer’s path to solution.

In [12], Problem transformation schemata define classes of problem transformation. They all conform to the

following general form of problem transformation:

That a problem transformation transforms a single problem P to a set of problems Pi , i = 1, ...,n ,

with justification J , means that under the transformation, S is a solution of P with adequacy argument

(A1 ∧ ... ∧ An) ∧ J whenever S1, ...,Sn are solutions of P1, ...,Pn , with adequacy arguments

A1, ...,An , respectively.

Note that, in general, J will express and justify the relation between the parts of P and those of of P1, ...,Pn .

As a result, through the linearization of the tree, we also obtained a structuring of S . Of course, such relations

could be arbitrarily complex, so that there is no general form for S .

3 The Case Study

We consider the following problem from [18] (in turn, adapted from [35]):

A package router is a large machine used by delivery companies to sort packages into bins according to bar-coded

destination labels affixed to the packages. Each bin corresponds to a regional area. Packages slide by gravity

through a tree of pipes and binary switches. The bins are at the leaves of this tree.

The problem is to control the operation of the package router so that packages are routed to their appropriate

bins, obeying the operators commands to start and stop the conveyor, and reporting any misrouted packages.

A schematic of the package router is given in Figure 2; the details of the pipes and switches appear in Figure 3.

 control
computer

(which
we must
build)

misrouting
display

 conveyor
 on/off
 buttons

conveyor
motor

operator

computer is
connected
to display,
buttons,
motor,
reading
station,
sensors &
switches

Figure 2: Schematic of the problem (based on [18])

3.1 The initial problem context

In order to provide a problem-oriented representation of the problem, the elements of the schematic must be con-

sidered and modelled as domains and phenomena. One possible approach is to map each element of the schematic

6

conveyor
label reading station
package sensors

pipe (for sliding down)

switch (not to be flipped
 unless empty)

bin (corresponding to one
 or more destinations)

Figure 3: Pipes and switches (based on [18])

to a domain in the model and hard-wired connections to some sets of shared phenomena between corresponding

domains. This raises a number of issues.

We should ask whether this level of granularity of the domains is appropriate for our analysis. Do we need to

consider the conveyor belt and motor as separate or could we represent them as a single domain? Similarly, should

we separate pipes, switches and sensors? In the case of the conveyor, the controller has no separate interaction with

the belt, and the relation between motor and belt is well understood, therefore, we could simplify the representation

by considering them as a single combined domain.

In modelling the context, we always have a choice between aggregating or separating the descriptions of

relevant parts of the world. What we seek is a choice which is fruitful for problem analysis. In general, we

want to aggregate, and model as a single domain, identified parts of the world with pertinent behaviours. For

instance, let us consider again the topology of Figure 3. The behaviours we may be interested in this problem have

to do with: a package label being read by the reading station; a package leaving the reading station; a package

entering or leaving a switch; the switch setting at any particular time; and a package being dropped into a bin.

A possible aggregation which may help us analyse these behaviours is suggested in Figure 4. For instance, each

switch has an incoming pipe and sensor, and two outgoing pipes and sensors, corresponding to the two routes a

package can take, while a bin has an incoming pipe and sensor, which is activated just before a package drops into

the bin.

Switch

Bin

Reading Station

Figure 4: An alternative representation of switches and sensors

7

Hard-wired phenomena, such as the connections shown in Figure 2, are certainly a good starting point to look

for shared phenomena. For instance, we know that sensor information is sent to the control computer as well as

readings from the reading station. However, other shared phenomena arise from transient interactions between

domains. This is the case, for instance, of the operator pushing the on/off conveyor buttons or using the display to

read information about misrouting.

For bins, switches and packages an identity concern [18] arises: we need to be able to identify the individual

switches through which a particular package is routed, and the particular bin in which it falls. Notationally, this is

indicated in a context diagram by indexing the corresponding domains and phenomena.

By taking the above considerations into account, a possible context diagram is illustrated in Figure 5: the

shared phenomena annotations are not yet included in the figure, as further analysis is still required. Note that,

as is always the case in modelling, the suitability of a proposed context diagram as a starting point for analysis is

open to debate, and something that would have to be validated with the customer in a real development. This is

because the choices we make in defining a context diagram have profound implications on subsequent analysis:

we can only reason about facts which can be explicitly captured within the bounds of the model; therefore leaving

out certain aspects of the real world means we assume they have no bearing on the problem under study. Making

sure that our assumptions are justifiable is necessary to the soundness of our analysis.

Controller Switch[i]

Bin[j]

Reading Station

On/Off
Buttons

Operator Display

Package[id]

Conveyor
Motor and Belt

Figure 5: Context diagram of the initial problem (P0), without shared phenomena annotations

3.1.1 Summary of step

This initial step of analysis can be considered as ending with an initial problem statement, P0, in which the

context diagram of Figure 5 provides an initial vocabulary of given and machine domains. The diagram also

indicates where phenomena are shared by including links between domains; however, at this point, we do not

know exactly which phenomena are they. The initial requirement is a generic need for a router controller whose

parts are represented in the context diagram; its exact statement has yet to be determined. At this point, little

is known of the given domains, other than they interact somehow based on the topology in the diagram. The

justification for this first step, J0, is in terms of validating that we have made some acceptable initial assumptions

on the world, its parts and their interrelations. P0 is the root of our ‘analysis tree’ of problems: each child problem

is derived through a problem transformation from its parent, with appropriate justification provided. An initial

justification leads to a first problem formulation as illustrated in Figure 6.

8

P0

J0

P0 Initial problem whose context diagram has no domain descriptions or phenomena annotations (Figure 5)

Figure 6: Tree view of the analysis

There are many possible analysis steps that may be taken from here - many will become apparent as we develop

the case study. We choose to start by filling in some of the detail about given domain behaviours and phenomena.

3.2 Behaviour and phenomena

In this section, we analyse in some detail behavioural characteristics of the given domains. In doing so, we

analyse relevant states and events, and define appropriate behavioural descriptions. We use state machines [30] as

a description language.

Let us start with the Conveyor Motor and Belt. On receiving on and off commands from the controller the

conveyor motor will activate or deactivate the belt accordingly. A plausible description of its behaviour is given in

Figure 7, where on and off are commands issued by the controller and shared between Controller and Conveyor

Motor and Belt.

Running
do / dropPkg[id] Stationary

off

on

on off

Figure 7: Conveyor Motor and Belt behaviour

We assume that this descriptions captures the essential behaviour of the conveyor motor and belt. As an

assumption, it is something we rely on in the subsequent analysis, and, hence, needs validation in the real-world,

either through the customer or direct empirical testing. The risk of not validating our assumptions is that the

resulting analysis may be unsound. The same observation applies to all behavioural descriptions in this section.

The operator (see Figure 5) uses the on/off buttons to control the conveyor through the controller. The on/off

buttons act as a connection domain [18] between operator and machine.

Next we are interested in the behaviour of the reading station. When a package arrives, the reading station

reads the label on the package and then releases it down into the pipe leaving the station. Figure 8 gives a pos-

sible representation of this behaviour. arrivedPkg [id] represents the arrival of a package with identity id at the

reading station. The arrival causes the reading station to start reading the package (Reading state with action

readPkg(id , dst)). After a short period of time, the package is read and the reading station releases it (transition to

Releasing triggered by the passage of time, with action releasePkg [id]). Releasing is complete when the package

enters the exit pipe, which triggers a signal out from the reading station sensor to the controller. arrivedPkg [id]

is a phenomenon controlled by Package and shared with Reading Station, while releasePkg [id] and out are both

controlled by Reading Station and shared with Package and Controller, respectively.

Let us now consider the behaviour of a switch. This is modelled in Figure 9. In our representation, Switch[i]

9

Reading
do / readPkg(id,dst)

arrivedPkg[id]

after (n seconds) /
releasePkg[id]

Ready

Releasing

out

Figure 8: Reading Station behaviour

corresponds to a switch and its incoming and outgoing pipes and sensors. When a package passes in front of

a sensor, then the sensor issues a signal to the controller. For example, event in[i][id] represents a package

with identity id passing in front of the incoming sensor of switch i ; this event triggers the signal in[i] from the

sensor to the controller. Similarly, pairs outLeft [i][id]/outLeft [i] and outRight [i][id]/outRight [i] correspond to

the package passing in front of the left and right exit sensors, respectively, and the corresponding signals triggered.

The switch itself can assume one of two positions, left or right, which determines the way a package will be

routed at the switch. It is important to know whether a package is currently in the switch as we can only set its

position, through activators left [i] and right [i], when the switch is empty. This raises a breakage concern [18]. A

breakage concern requires the developer to ensure that the machine (in our example the controller) does not cause

a problem domain (in our case one of the switches) to enter an unknown state. The model in Figure 9 does not take

into consideration possible delays in state transition when a switch position is set, due to the fact that the switch

is a mechanical device. Such delays will require careful consideration in order to fine tune the controller so that a

switch position is set in time for an incoming package to be routed correctly. In our example, we disregard such

delays.

Switch[i] controls, and shares with the Controller , phenomena and in[i], outLeft [i] and outRight [i]. It also

shares phenomena in[i][id], outLeft [i][id] and outRight [i][id] with Package , which controls them.

Empty &
Left [i]

Full &
Left [i]

in[i][id]
/ in[i]

?right[i]

Empty &
Right [i]

Full &
Right [i]

outLeft[i][id]
/ outLeft[i]

in[i][id]
/ in[i]

outRight[i][id]
/ outRight[i]

left[i]

left[i]

left[i] left[i]

right[i] right[i]

right[i]

Figure 9: Switch[i] behaviour

Let us now look at Bin[j]. This is representative of a bin together with its incoming pipe and sensor. The

sensor will issue a signal (bin[j]) whenever it senses a package passing (event bin[j][id]).

The behaviour of a package is also of interest. This is represented in Figure 10, which reflects as states

the positions of a package in its journey from the conveyor, through the router and to its destination bin. For

simplicity, we have abstracted the router pipes away in our model, and, with some abuse of notation, we use

10

event sequences (with separator a ’;’) to annotate transitions. For instance, the transition of a package from

being in the reading station (InRS [id]) to the first switch (InSwitch[i][id], with i equal to 1) is annotated by the

sequence releasePkg [id]; in[1][id], representing the event of the package being released at the reading station

(releasePkg [id]) immediately followed by the package entering the switch (in[1][id]).

OnBelt[id] InRS[id]

dropPkg[id];arrivedPkg[id]

InBin[j][id] InSwitch[i][id]

releasePkg[id];in[1][id]

outLeft[i][id];in[2i][id]

[i>2^treeHeight-1]
outLeft[i](id);bin[2i](id)

outRight[i][id];in[2i+1][id]
[i>2^treeHeight-1]
outRight[i][id];bin[2i+1][id]

Figure 10: Package[id] behaviour

This behavioural model is a reflection of the binary tree nature of the package router, which will only allow

packages to follow specific routes from the reading station to the bins. In terms of sensor signals, the journey

of a package from the reading station to a bin - assuming the package does not get stuck on its way - can be

characterised by a sequence of events adhering to the following rules (refer also to Figure 11), which characterise

a perfectly balanced binary tree:

• releasePkg [id] is followed by in[1][id];

• in[i][id] is followed by either outLeft [i][id] or outRight [i][id];

• for a tree of height n > 0 and for 2n−1 ≤ i ≤ 2n − 1, each outLeft [i][id] or outRight [i][id] is followed by

a bin[j][id], for 1 ≤ j ≤ 2n .

1

2 3

4 5 6 7

1 2 3 54 6 7 8

Figure 11: Binary tree of height n = 3, with m = 2n = 8 leaves (the bins) and m − 1 = 2n − 1 = 7 internal
nodes (the switches)

Finally, the controller is to use the display to show information about package misrouting to the operator.

The detail of what is to be displayed is yet to be determined. Therefore we use a more abstract phenomenon,

display(id , dst , k), to signpost the fact that some information (about the package identity and destination, and the

bin number it actually arrived at) will be shared between those domains, the details of which will be decided later

on in the analysis.

11

The context diagram with the identified shared phenomena is given in Figure 12.

Controller

Conveyor
Motor and Belt

Switch[i]

Bin[j]

Reading Station

On/Off
Buttons

Operator Display

O!{on, off}

CMB!{dropPkg[id]}

RS!{readPkg(id,dst), out}

S!{in[i], outLeft[i],
outRight[i]}

C!{left[i], right[i]}

B!{bin[j]}

Package[id]

P!{arrivedPkg[id]}

P!{bin[j][id]}

C!{on, off}

CS!{on, off}

C!{misroute(id,dst,k)}

D!{display(id,dst,k)}

RS!{releasePkg[id]}

P!{in[i][id], outLeft[i][id],
outRight[i][id]}

Figure 12: Context diagram with shared phenomena annotations (for transformed problem P1)

3.2.1 Summary of step

This step transforms problem P0 to a problem P1 (see Figure 13), where behavioural descriptions have been

provided for the given domains, together with their relevant phenomena, while the remaining parts of P0 remain

unchanged. The justification J1 required for this transformation is that the given descriptions are approximately

true, an assumption which should be validated in the real world.

P0

P1

J1

J0

P0 Initial problem whose context diagram has no domain descriptions or phenomena annotations (Figure 5)
P1 Initial problem whose context diagram includes domains descriptions and phenomena annotations (Figure 12)

Figure 13: Tree view of the analysis

Having made an initial exploration of the context of the problem, we move to analysing the requirements for

the problem.

3.3 Requirements

As stated earlier, the problem is to control the operation of the package router so that packages are routed to their

appropriate bins, obeying the operators commands to start and stop the conveyor and reporting any misrouted

packages. This is a rather complex problem which we are going to tackle, in the spirit of problem orientation, by

trying to separate various aspects, which may be addressed as separate sub-problems.

Ultimately, of course, to solve this problem we would need to produce code that controls, through some ap-

propriate physical device, the switches of the package router. Code and physical device together are the controller

machine we are seeking. In our analysis we go some way towards this goal by actually developing (part of) the

specification of the code.

12

The way the machine can control the router is by reading a package destination on the package label via the

reading station, then setting the various switches to the appropriate position so that the package is routed to the

desired bin. A properly configured controller will know the identity of each switch and the position of each bin.

However, as many packages will be on route at any one time, the controller will have to be able to track the

route each package is following in order to change the appropriate switches at the appropriate time. Note that this

information is not contained in the sensors inputs: a sensor reports that a package has crossed the sensor, but not the

package identity. This gives rise to an information deficit concern [20, 15] as the controller cannot determine the

current position of a package directly from sensory inputs. We will deal with this problem later on in Section 3.6,

when we discuss a standard solution to this concern.

Related to routing is the report of any misrouted package. A package is considered as misrouted if it doesn’t

reach the bin appropriate to the package’s destination. Once again, we have an information deficit: in order to

decide whether a package has been misrouted, the controller must know its route and current position. This deficit

will also be addressed in Section 3.6.

Another part of the problem is to allow the operator to control the package conveyor by using the conveyor

on/off buttons.

Let us express these aspects of the problem as the following two separate parts of the requirement, which leads

to the problem diagram of Figure 142.

Obey command An on command from the operator should result in the conveyor belt state Running ; an off

command from the operator should result in the conveyor belt state Stationary .

and

Route and report A package with identity id and destination dst arriving at the reading station (arrivePkg [id])

should reach the bin corresponding to its destination (bin[id][j], where Bin[j] corresponds to dst); otherwise

misroute information misroute(id , dst , k) should be reported, where Bin[k] is the bin erroneously reached

by the misrouted package.

Controller

Conveyor
Motor and Belt

Switch[i]

Bin[j]

Reading Station

On/Off
Buttons

Operator Display

O!{on, off}

S!{in[i], outLeft[i],
outRight[i]}

C!{left[i], right[i]}

B!{bin[j]}

Package[id]

C!{on, off}

CS!{on, off}

Obey
command

{on, off}

{Stationary, Running}

Route and
report

{arrivedPkg{id},
!{bin[j][id]}

!{misroute(id,dst,k)}

CMB!{dropPkg[id]}

P!{arrivedPkg[id]}

P!{bin[j][id]}

RS!{releasePkg[id]}

P!{in[i][id], outLeft[i][id],
outRight[i][id]}

RS!{readPkg(id,dst), out}

C!{misroute(id,dst,k)}

D!{display(id,dst,k)}

Figure 14: Problem diagram with requirement statement in two separate parts (problem P2)

2Here we abuse the problem frames notation somewhat, as this would only allow one requirement oval to be included in a problem diagram.

13

3.3.1 Summary of step

This step of analysis transforms P1 to problem P2 (of Figure 14), where the requirement is restated as the con-

junction of Obey command and Route and report. The justification J2 for this transformation should be an

argument that this interpretation of the requirement corresponds to what the customer desires. The analysis so far

is summarised in Figure 15.

P0

P1

P2

J1

J2

J0

P0 Initial problem whose context diagram has no domain descriptions or phenomena annotations (Figure 5)
P1 Initial problem whose context diagram includes domains descriptions and phenomena annotations (Figure 12)
P2 Problem diagram with statement of requirement (Figure 14)

Figure 15: Tree view of the analysis

In the next step we look at dealing with the stated parts of the requirement as separate sub-problems.

3.4 Architectures and sub-problems

In separating the two parts of requirement, it is our intention to deal with them as separate sub-problems. The

transformation that produces this separation, called architectural expansion in the framework, regards the solution

of each sub-problem as a separate machine, as indicated in Figure 16. Here, the logical architecture of the con-

troller includes an independent component to deal with each sub-problem: the Conveyor Controller and the R&R

Controller.

In separating sub-problems some concerns arise when recomposition of their solution is required later on. A

number of composition concerns are identified in [18] which relate to issue of synchronisation, consistency of

description across sub-problems, interference and precedence. Unless the architectural expansion deals with some

of them through decomposition of a standard architecture (as we will see later on in this document), these concerns

are usually deferred and dealt with later once sub-problem solutions are found.

In considering the sub-problems separately, we need to identify which parts of the problem context are relevant

to each of them (and which to both). First, we consider the Obey command sub-problem. Its requirement states a

relation which we would like to be true between operator commands and conveyor belt states. In particular, belt

states are constrained by the requirement based on operator commands. For such a relation to be established, we

can exploit causal relations existing between phenomena of Operator , On/Off Buttons, Conveyor Controller and

Conveyor Motor and Belt, identifiable from their domain properties, hence these parts of the context are all to be

considered in the sub-problem analysis.

We should also consider whether there exist other phenomena the Conveyor Motor and Belt shares with the

14

R&R
Controller

Conveyor
Motor and Belt

Switch[i]

Bin[j]

Reading Station

On/Off
Buttons

Operator Display

O!{on, off}

S!{in[i], outLeft[i],
outRight[i]}

RRC!{left[i], right[i]}

B!{bin[j]}

Package[id]

C!{on, off}CS!{on, off}

Obey
command

{on, off}

{Stationary, Running}

Route and
report

Conveyor
Controller

Controller
architecture

{arrivedPkg{id},
!{bin[j][id]}

CMB!{dropPkg[id]}

P!{arrivedPkg[id]}

P!{bin[j][id]}

RS!{releasePkg[id]}

P!{in[i][id], outLeft[i][id],
outRight[i][id]}

RS!{readPkg(id,dst), out}

RRC!{misroute(id,dst,k)}

D!{display(id,dst,k)}

!{misroute(id,dst,k)}

Figure 16: Architectural expansion into independent components (P3)

remainder of the problem context, and which may influence the state of the belt, hence the satisfaction of the

requirement. From the problem diagram and behaviour descriptions, Conveyor Motor and Belt only shares phe-

nomenon dropPkg [id] with Package[id], which is controlled by the conveyor and appears no to have any effect

on the belt state, hence we can disregard it. We can therefore ignore the remainder of the context in the analysis of

the sub-problem as indicated in Figure 17.

R&R
Controller Switch[i]

Bin[j]

Reading Station

Conveyor
Switch

Display

O!{on, off}

RS!{readPkg(id,dst), out}

S!{in[i], outLeft[i],
outRight[i]}

RRC!{left[i], right[i]}

B!{bin[j]}

Package[id]

C!{on, off}CS!{on, off}

RRC!{misroute(id,dst,k)}

D!{display(id,dst,k)}

Obey
command

{on, off}

{Stationary, Running}

Conveyor
Controller

Conveyor
Motor and Belt

Operator

CMB!{dropPck[id]}

P!{arrivedPkg[id]}

P!{in[i][id], outLeft[i][id],
outRight[i][id]}

P!{bin[j][id]}

RS!{releasePkg[id]}

Figure 17: Obey command sub-problem (P6)

A similar analysis of the Route and report sub-problem leads to the problem diagram in Figure 18.

3.4.1 Summary of step

This step of analysis is a combination of a number of tranformations and is summarised in Figure 19. Firstly, P2

(of Figure 14) is transformed to problem P3 (of Figure 16) by interpreting the solution description to include two

separate machines. The justification J3 for this transformation includes the architectural considerations which led

to Figure 16. Then two sub-problems, P4 and P5, are generated, corresponding to the problems of specifying the

Conveyor Controller and the R & R Controller, respectively. Finally, problem reduction (which we explain next)

is used twice to derive problems P6 (highlighted part of Figure 17) and P7 (highlighted part of Figure 18). The

15

R&R
Controller

Conveyor
Motor and Belt

Switch[i]

Bin[j]

Reading Station

On/Off
Buttons

Operator Display

O!{on, off}

S!{in[i], outLeft[i],
outRight[i]}

RRC!{left[i], right[i]}

B!{bin[j]}

Package[id]

C!{on, off}CS!{on, off}

D!{display(id.dst.k)}

Route and
report

Conveyor
Controller

{arrivedPkg{id},
!{bin[j][id]}

P!{arrivedPkg[id]}

P!{bin[j][id]}

RS!{releasePkg[id]}

P!{in[i][id], outLeft[i][id],
outRight[i][id]}

CMB!{dropPck[id]}

RS!{readPkg(id,dst), out}

RRC!{misroute(id,dst,k)}

!{misroute(id,dst,k)}

Figure 18: Route and report sub-problem (P7)

justifications J4 and J5 of these transformations justify the narrowing of the problem context in each sub-problem.

3.5 Problem reduction

The aim of our problem analysis is to derive a specification from which a solution to the problem can be imple-

mented. In the context of problem frames, a specification is a machine description which is expressed entirely in

terms of phenomena that the machine shares directly with its context (so called ‘specification phenomena’). Prob-

lem reduction [12, 32] is a transformation which, in the context of a problem, aims at deriving a specification from

the requirement in a systematic and solution-preserving way. For instance, in the Route and report sub-problem of

Figure 18, a specification derived through reduction would be expressed entirely in terms of the phenomena the R&

R Controller shares with its context, as opposed to the current requirement constraining Package[id] phenomena,

which are not accessible by the machine.

As shown in the narrowing of the problem context of a sub-problem, encountered in the previous section,

reduction relies on causal relations between phenomena. The result of the transformation is illustrated in Figure 20:

it has the combined effect of re-expressing the requirement in terms of specification phenomena and narrowing

down the problem context by ‘removing’ Package[id]. The intent is that a solution to the reduced problem in

Figure 20 will also be a solution to the problem in Figure 18: the justification for the transformation must, of

course, be adequate to ensure this.

Here is the justification for the transformation. Assume a readPkg(id , dst) has occurred at the reading sta-

tion, indicating the presence of a package with identity id and destination dst . For the package to reach the bin

corresponding to its destination (bin[j][id], it must follow a particular route through the router leading to that bin.

Given the topology of the router and the effect of gravity, the package can only follow one particular route. For

instance, a route sequence may have the form (see also Figure 11):

releasePkg [id]; in[1][id]; outLeft [1][id]; in[2][id]; outLeft [2][id]; . . .

. . . ; in[2n−1][id]; outRight [2n−1][id]; bin[2][id]

that is, it starts with the package exiting the reading station, continues with the package entering and exiting a

16

P0

P1

P3

P4 P5

J1

J2

J0

P2

J3

P6

J4

P7

J5

P0 Initial problem whose context diagram has no domain descriptions or phenomena annotations (Figure 5)
P1 Initial problem whose context diagram includes domains descriptions and phenomena annotations (Figure 12)
P2 Problem diagram with statement of requirement (Figure 14)
P3 Controller domain expanded into two architectural components (Figure 16)
P4 Conveyor Controller sub-problem
P5 R & R Controller sub-problem
P6 Conveyor Controller sub-problem with reduced context (Figure 17)
P7 R & R Controller sub-problem with reduced context (Figure 18)

Figure 19: Tree view of the analysis

R&R
Controller Switch[i]

Display

S!{in[i], outLeft[i],
outRight[i]}

RRC!{left[i], right[i]}

B!{bin[j]}

Route and
report'

!{bin[j]}
{readPkg(id,dst)},
 !{out}

 !{!in[i],
 outLeft[i],
 outRight[i]}

Package[id]

Bin[j]

Reading Station P!{arrivedPkg[id]}

P!{bin[j][id]}

RS!{releasePkg[id]}

P!{in[i][id], outLeft[i][id],
outRight[i][id]}

RS!{readPkg(id,dst), out}

RRC!{misroute(id,dst,k)}

!{misroute(id,dst,k)}

Figure 20: Problem reduction (to problem P8)

17

sequence of switches, and ends with the package entering Bin[2] in this case.

Assuming all sensors behaves reliably, each of these package events triggers a sensor signal to the controller

(see also the behaviour of reading station and switches in Figures 8 and 9), hence from a sequence of package

events we can derive a corresponding sequence of sensor signals. For instance from the route sequence above we

can derive the signal sequence:

out ; in[1]; outLeft [1]; in[2]; outLeft [2]; . . . ; in[2n−1]; outRight [2n−1]; bin[2]

Let route(id , dst) denote the sequence of signals which can be derived from the route taken by a package with

identity id and destination dst . Similarly, let route(j) denote the sensor sequence corresponding to the route a

package should take to reach Bin[j]. Note that this is fixed for each bin, and based on the topology of the binary

tree (see Figure 11); for instance, route(1) always follows the left branch of each sub-tree, that is:

out ; in[1]; outLeft [1]; in[2]; outLeft [2]; . . . ; in[2n−1]; outLeft [2n−1]; bin[1]

Hence, assuming the given topology, only if route(id , dst) is the same as route(j), with Bin[j] corresponding

to dst , the package will have reached the correct destination. From this observation, we can abstract away the

Package[id] domain, and re-express the requirement in terms of sensor signals as follows:

Route and report′ Assuming a given router topology, a readPkg(id , dst) at the reading station should result in

route(id , dst) being the same as route(j), with Bin[j] corresponding to dst . Otherwise misroute informa-

tion misroute(id , dst , k) should be reported, where bin[k] is the last element of route(id , dst).

3.5.1 Summary of step

This step of analysis transforms P7 (highlighted part of Figure 18) to problem P8 (highlighted part of Figure 20).

The justification J6 for this transformation is in terms of the causal relationships between phenomena and as-

sumptions which can be made of parts of the context that are abstracted away, which are captured in the restated

requirement. Figure 21 summarises the analysis so far.

3.6 Further architectural expansion

Let us consider the Route and report′ sub-problem further. As noted in Section 3.3, as many packages will be

on route at any one time, the controller will have to track the route each package is following in order to set the

correct switch directions at appropriate times. Also, as the controller cannot determine the current position of a

package directly from the sensor’s inputs, we have an information deficit to deal with. A standard solution is that

of building a model [18]: this will allow the controller to track dynamically information about bins, switches and

their states, and packages and their routes.

Note how the recognition of an information deficit leads to an architectural decision: that the controller needs to

include a model component. This is an example of intertwining of problem and solution [29, 31]: the identification

of a problem leads to the search for a standard solution, which can then be used to further problem analysis.

In this sub-problem we can take architectural considerations even further. The problem is a control problem

in which inputs and outputs are mediated by a model. A solution architecture which is known to address this

18

P0

P1

P3

P4 P5

J1

J2

J0

P2

J3

P6

J4

P7

J5

P8

J6

P0 Initial problem whose context diagram has no domain descriptions or phenomena annotations (Figure 5)
P1 Initial problem whose context diagram includes domains descriptions and phenomena annotations (Figure 12)
P2 Problem diagram with statement of requirement (Figure 14)
P3 Controller domain expanded into two architectural components (Figure 16)
P4 Conveyor Controller sub-problem
P5 R & R Controller sub-problem
P6 Conveyor Controller sub-problem with reduced context (Figure 17)
P7 R & R Controller sub-problem with reduced context (Figure 18)
P8 Further reduction of R & R Controller sub-problem (removal of Package[id], Figure 20)

Figure 21: Tree view of the analysis

19

type of problem is a variant of the Model View Controller (MVC) architecture. Originally introduced for software

applications with graphical user interfaces [23], an MVC architecture includes controller (C) components which

receive user inputs and update a model (M) component accordingly; changes in M are communicated to its

dependents, called view (V) components, which interpret them and generate user outputs appropriately. Variants

of this MVC architecture have been adopted in control applications, such as avionics [26]. Here, instead of user

inputs, environmental sensor information is received by the controller and used to update the model, while the

view generates outputs based on changes in the model’s state. Outputs are either user outputs to a display (as in

the traditional MVC) or actuator signals through which the controller influences the environment. It is this variant

of the MVC which is discussed here.

Figure 22 illustrates an MVC architecture with a single controller and view, presented in problem frames

notation. Note that this architectural expansion leads to three sub-problems, which are co-dependent: those of

specifying each architectural component. In order to solve the Model sub-problem we would need a complete

description of the controller and view. Similarly, in order to solve the Controller (or View) sub-problem we would

need a complete description of the model. We ‘co-design’ in the presence of co-dependent sub-problems, A

way to resolve co-design is to establish which part of the architecture should be specified first, and which parts

should follow. In an MVC architecture, both controller and view are dependent on the model, which is also the

component which presents the highest level of complexity, hence the highest development risk. Because of risk

and complexity, it is therefore sensible to deal with the model component first [24, 25].

C!{commands
 to set model state}

M!{model state}

S!{in[i], outLeft[i],
outRight[i]}

V!{left[i], right[i]}

B!{bin[j]}

C

V

M

RS!{readPkg(id,dst), out}

V!{misroute(id, dst, k)}

Figure 22: MVC architecture in problem frames notation

When applied to our problem, the result is that of Figure 23. The architecture of the machine is made explicit

and expanded into the three distinct components. This de-coupling of model, view and controller components

allows us not only to identify further sub-problems, but also to determine how they fit together, based on standard

architectural properties of the MVC.

3.6.1 Summary of step

This step of analysis (summarised in Figure 24) transforms P8 to P9 (of Figure 23) by re-interpreting the machine

domain as the combination of the three architectural components. For justification J7 of this transformation we

appeal to the arguments we have made that the MVC is a suitable solution architecture to deal with the information

deficit in our problem. From P9, the three sub-problems corresponding to finding each of the components are

20

Switch[i]

Bin[j]

Reading Station

Display

S!{in[i], outLeft[i],
outRight[i]}

V!{left[i], right[i]}

B!{bin[j]}

C

V

R&R
Controller

architecture

Route and
report'M

!{bin[j]}

{readPkg(id,dst)},
 !{out}

 !{!in[i], outLeft[i],
outRight[i]}

RS!{readPkg(id,dst), out}

V!{misroute(id,dst,k)}
!{misroute(id,dst,k)}

Figure 23: MVC expansion (P9)

derived that is: the Model sub-problem (P10); the View sub-problem (P11); and the Controller sub-problem

(P12).

Our next step is to specify the model, the more risky and complex part of the architecture.

3.7 Specifying the model M

We need to define an analogic model [18] of the package router, which will allow the R & R Controller dynamically

to track information about bins, switches and their states, and packages and their routes. In particular, the analogic

model will have to provide during operation a faithful representation of the package router state.

Building an analogic model is a design activity, which involves making decisions about the machine’s data

structures and their behaviour, rather than capturing new given properties of the world. Such design decisions are

dependent on which questions the model is built to answer – in our example, the identity and position of each

package in the router, the switch states, etc. Figure 25 gives an illustration of a possible abstraction, proposed in

[18], on which the model data structure can be based. Packages travelling in the router can be seen as joining and

leaving queues at various points of the router: at the reading station, inside switches and in the pipes that connect

reading station, switches and bins. This abstraction based on queues is sensible only if packages cannot overtake

each other while travelling through the router. Hence, such a design choice needs to be validated in the real

world, for instance, through reasoning based on the physical properties of the mechanical devices and packages,

or established knowledge and experience with routers and queues, or even by empirical testing, and considering if

any reliability issues with the package router may be uncovered by this abstraction.

Based on this abstraction, and by taking an object-oriented design view, a possible structural description of M

is given by the class diagram [30] of Figure 26. The description is based on well-established object-oriented design

heuristics: that classes should be defined to represent relevant parts of the real world, and that an ‘orchestrating

class’ (OC) should be added, whose only instance has the responsibility to initialise and orchestrate the behaviour

of the model [25]. Class associations reflect the static topological relations between the various parts of the router:

for instance, the binary tree topology is reflected in the fact the each switch is associated with exactly three package

queues, one incoming and two outgoing. The dynamic relationship between packages and queues is also captured

21

P9

J7

P10 P12P11

P0

P1

P3

P4 P5

J1

J2

J0

P2

J3

P6

J4

P7

J5

P8

J6

P0 Initial problem whose context diagram has no domain descriptions or phenomena annotations (Figure 5)
P1 Initial problem whose context diagram includes domains descriptions and phenomena annotations (Figure 12)
P2 Problem diagram with statement of requirement (Figure 14)
P3 Controller domain expanded into two architectural components (Figure 16)
P4 Conveyor Controller sub-problem
P5 R & R Controller sub-problem
P6 Conveyor Controller sub-problem with reduced context (Figure 17)
P7 R & R Controller sub-problem with reduced context (Figure 18)
P8 Further reduction of R & R Controller sub-problem (removal of Package[id],Figure 20)
P9 R & R Controller domain expanded into three architectural components (Figure 23)
P10 M sub-problem
P11 V sub-problem
P12 C sub-problem

Figure 24: Tree view of the analysis

23/03/06 PgkRtr1 - 25

Which Package Is Now At Sensor[s]?

! No overtaking: packages queue in pipes and switches

! Each queue associated with its entry point e " {sensor}#RS

• Each package first enters the Reading Station queue

• Packages queue in switches: only one exit active at once

! The machine can maintain a dynamic model of these queues

• Queued elements pi are pairs (Id, Destination)

• p(ID,Destination) represents the package in the model

SWa SWbReading
Station

Reading
St’n Queue

Pipe
Queue

Switch
Queue

Pipe
Queue

Switch
Queue

Pipe
Queue

BinBpk
Id
Dst

queued packages pi...

pj
Id
Dst

pi
Id
Dst

Figure 25: Using queues as an abstraction

22

by an association: each package can be at most in one queue at any one time.

SwitchQueue

in();
outLeft();
outRight();

Package
id: Identity;
dst: Destination;

RSQueue

out();

Bin
no: Number;
bin();

Queue

add(Package);
remove(): Package;

ReadingStation

read(Identity, Destination);

Switch
no: Number;
state: SwitchState
left();
right();

1

1

0..1

0..1

1
3 0..1

1

currentQueue0..1

*

1

1

PipeQueue

OC

init();
<< signal >> read(Identity, Destination);
<<signal>> out(();
<<signal>> in_i();
<<signal>> outLeft_i();
<<signal>> outRight_i();
<<signal>> bin_j();

1

1 1

*

*

1

<<enumeration>>
SwitchState

Left;
Right;

value {ordered}

Figure 26: Structural description of M

The behaviour of M should be devised in a way which addresses the model-world correspondence concern

[18], that is making sure that during operation the state of the model is a faithful representation of the world state.

An example of a behavioural specification is given by the sequence diagram [30] of Figure 27, which illustrates

what happens when the input sensor of switch i is triggered: the orchestrating instance invokes the in() operation

on the switch queue object, which retrieves the package from the incoming pipe queue and adds it to the switch

own queue. Similar descriptions should be provided for all other incoming signals.

in_i()
remove()

package

sq_i: SwitchQueue in_i: PipeQueue

add(package)

: OC

in()

Figure 27: Behavioural description of M on receiving signal in[i]

The current state of a switch in the router is not directly observable by the machine, as there are no sensors to

this effect. However, it can be inferred from the outLeft[i], outRight[i] signals: when outLeft[i] is triggered, the

Switch[i] state can only be Left (ignoring failure); similarly for Right . Based on this observation, we can make

sure the a switch state is properly represented in the model every time outLeft[i], outRight[i] signals are received

by the machine. This is exemplified in the behavioural description in Figure 28 of operation outLeft i(): note how

the last operation invocation set the switch state in the model.

The initialisation of M will have to reflect the actual topology of the router (i.e., which particular switches are

connected to each other, etc.), setting the initial state of each switch and the content of each queue (i.e. which

packages are in the router and their position. Operation init() in the model will have to be specified to this effect.

Once an adequate description of M is provided, we can regard M as a given component, with known shared

23

outLeft_i()

add(package)

sq_i: SwitchQueue outL_i: PipeQueue

remove()

: OC

outLeft()

package

swL_i: Switch

left()

Figure 28: Behavioural description of M on receiving signal outLeft[i]

phenomena with C and V . In the case of C , they are all the operation invocations on the orchestrating instance. In

the case of V , it is the model state, that is the instantiation of the structural model of Figure 26. This is illustrated

in Figure 29 when M is now represented as a given domain – plain rectangle – rather than a machine domain –

striped rectangle.

C!{init(), out(), in_1(), ..., bin_1(), ...}

M!{model state}

C

V

M

Figure 29: Shared phenomena between MVC components

Note that during detailed design or implementation, a decision has to be made as to how changes in the model

are propagated to the view. There are two standard ways in which this is achieved in practice [9]. The pull

approach is predicated on M notifying V that a change has occurred and V accessing the model state to find

out which relevant parts of the model have changed. The push approach is predicated on M sending V specific

information of what has changed. Efficiency considerations often determine which of the two approaches should

be chosen for a particular development problem based on the complexity of the model and the number of views.

The availability of either mechanism at the programming level is another determining factor. Although important,

these considerations are outside the scope of this document, which only deals with problem analysis up to early

design. In any case, once a decision is made it would be possible within the framework to base further design on

it.

3.7.1 Summary of step

This step of analysis includes two transformations. The first transformation, from P10 to P13, is the interpretation

which provides the description of M . Its justification J8 must support the claim that the specification of M is an

appropriate analogic model of the package router, a claim which requires validation with respect to the real world.

The necessary validation is two fold: first with respect to the modelled parts of the problem world; and second,

24

with respect to the internal consistency of the M domain. The second transformation solves P13 by providing the

adequacy argument J9 of the specification with respect to the requirement. Figure 30 summarises the analysis: the

black dot connected to P13 indicates this problem has been solved.

P9

J7

P10 P12P11

P0

P1

P3

P4 P5

J1

J2

J0

P2

J3

P6

J4

P7

J5

P8

J6

P13

J8

J9

P0 Initial problem whose context diagram has no domain descriptions or phenomena annotations (Figure 5)
P1 Initial problem whose context diagram includes domains descriptions and phenomena annotations (Figure 12)
P2 Problem diagram with statement of requirement (Figure 14)
P3 Controller domain expanded into two architectural components (Figure 16)
P4 Conveyor Controller sub-problem
P5 R & R Controller sub-problem
P6 Conveyor Controller sub-problem with reduced context (Figure 17)
P7 R & R Controller sub-problem with reduced context (Figure 18)
P8 Further reduction of R & R Controller sub-problem (removal of Package[id],Figure 20)
P9 R & R Controller domain expanded into three architectural components (Figure 23)
P10 M sub-problem
P11 V sub-problem
P12 C sub-problem
P13 M sub-problem interpreted with a description of M and then solved

Figure 30: Tree view of the analysis

3.8 Specifying the controller C

We can now consider the sub-problems of specifying C and V , under the assumption that M is as specified in the

previous section. Of course, proceeding in this way may lead to the realisation that M is an inadequate model,

hence lead to iteration – which, of course, we would be prepared to do if necessary.

25

By assuming M , the specification of C becomes simple: C is entirely decoupled from V and only responsible

for translating inputs from the environment into operation invocations on the only instance of the orchestrating

class OC of M . The correspondence between its inputs and outputs is rather trivial: by following our naming con-

vention, on receiving signal in[i], C will invoke operation in i(); on receiving, outLeft[i], C will invoke operation

outLeft i(); etc.

3.8.1 Summary of step

This analysis step produces a solution for P8, the sub-problem of specifying the C component of the architecture.

As for M , solving a problem is regarded as a problem transformation whose justification J10 is the adequacy

argument that the specification of C satisfies the requirement of a controller which modifies the model’s state

consistently with inputs from the environment. The solution assumes as given the specification of M of the

previous section.

3.9 Specifying the view V

In comparison with that of C , the problem of specifying V is more complex and we will analyse it in more detail.

The corresponding problem diagram is given in Figure 31, where descriptions of M and C are now assumed as

given (hence both represented as given domains instead of machine domains).

Switch[i]

Bin[j]

Reading Station

Display

S!{in[i], outLeft[i],
outRight[i]}

V!{left[i], right[i]}

B!{bin[j]}

C

M

V

Route and
report'C!{init, out, in_1, ...,

bin_1, ...}

M!{model state}
!{bin[j]}

{readPkg(id,dst)},
 !{out}

 !{!in[i], outLeft[i],
outRight[i]}

RS!{readPkg(id,dst), out}

!{misroute(id,dst,k)}
V!{misroute(id,dst,k)}

Figure 31: The sub-problem of specifying V (P11)

Let us recall from Section 3.5 the requirement for this problem:

Route and report′ Assuming a given router topology, a readPkg(id , dst) at the reading station should result in

route(id , dst) being the same as route(j), with Bin[j] corresponding to dst . Otherwise misroute informa-

tion misroute(id , dst , k) should be reported, where bin[k] is the last element of route(id , dst).

First, we want to simplify the problem as much as possible by applying reduction techniques as we did in

Section 3.5. These should have the effect of narrowing down the problem context and re-expressing the requirement

in terms of specification phenomena.

Because of the specification of C , we know that inputs from the environment are translated into operation

invocations on the model M . We can therefore restate a package route in terms of operation invocations instead of

26

sensor signals (see Section 3.5) and re-express the requirement accordingly. For instance, route

out ; in[1]; outLeft [1]; in[2]; outLeft [2]; . . . ; in[2n−1]; outRight [2n−1]; bin[2]

can be restated as

out(); in 1(); outLeft 1(); in 2(); outLeft 2(); . . . ; in 2n−1(); outRight 2n−1(); bin 2()

Because we have a description of M , we know the effect of operation invocations on the model state which

is shared with V . For instance, the execution of operation outLeft i() will result in switch i having state Left.

Therefore, the route above can also be restated in terms of switch states as follows, where Left i indicates state

Left of switch i (similarly for Right i):

Left 1; Left 2; . . . ; Right 2n−1

Let route ′(id , dst) denote the route of a package when restated in terms of switch states (similarly, for the

route to a bin). By assuming the available descriptions of all physical domains, and of C and M , we can rewrite

the requirement as follows, which leads to the reduced problem of Figure 32, where the package and bin routes are

expressed in terms of switch states:

Route and report′′ Assuming a given router topology, and assuming the given behaviours of Reading Station and

Bin[j], a readPkg(id , dst) at the reading station should result in route ′(id , dst) being the same as route ′(j),

with Bin[j] corresponding to dst . Otherwise misroute information misroute(id , dst , k) should be reported,

where bink () is the last element of route ′(id , dst).

Switch[i]

Bin[j]

Reading Station

Display

RS!{readPkg(id,dst), out}

S!{in[i], outLeft[i],
outRight[i]}

V!{left[i], right[i]}

B!{bin[j]}

C

C!{init, out, in_1, ...,
bin_1, ...}

M!{model state}

Route and
report''

{read(id,dst)},
 !{out(), in_i(), outLeft_i(),
 outRight_i(), bin_j()}V

M

!{misroute(id,dst,k)}

V!{misroute(id,dst,k)}

Figure 32: Problem reduction (to problem P15)

Note that the assumption of the already described given behaviours in the restated requirement is what makes

the transformation sound: it allows us to argue that a solution of the reduced sub-problem is also a solution of the

original sub-problem. For instance, from the behavioural description of Switch[i], we know that on receiving a

left[i] commands the switch position will be set to the left, leading to an outLeft[i] signal as soon as a package

leaves the switch and goes through the sensor. This signal is related to C , which invokes the corresponding

operation outLeft i, which in turn causes the state of the switch in the model to be set to Left (see Figure 28).

27

For V to be a solution to the reduced sub-problem, it needs to be able to determine which route each package

should follow and set switch states accordingly. We make the design decision to represent route information in M

through the addition of a class SQueue as shown in Figure 33. This class represents an ordered sequence of switch

states and is used for three different purposes:

Package
id: Identity;
dst: Destination;

Bin
no: Number;
bin();

SQueue
value: SwitchState[*]; {ordered}
add(SwitchState);
remove(): SwitchState;

<<enumeration>>
SwitchState

Left;
Right;

0..1

0..1

1

0..1
route

route

Switch
no: Number;
state: SwitchState
left();
right();

0..1

1 settings

Figure 33: Route class

For each bin, an instance of this class represents the route from the reading station to the bin, which is statically

determined based on the router topology and set in the model at initialisation;

For each package, an instance of this class represents the route a package still has to travel in order to reach

its destination. This is initially set when the package destination is read at the reading station (through

invocation of operation read in the model) and decreases in length as a package goes through each switch on

its route.

For each switch, an instance of this class represents the sequence of settings of the switch which allows the incom-

ing packages (i.e., packages in the in queue of the switch) to be routed correctly. This changes dynamically

as packages enters the switch incoming and outgoing queues.

L

LLRR

L

RRLR

LRR

L LR

RLR

LRR

L R

RLR

LRRL

package
routes

switch
settings

switch
state

a) b) d)c)

Figure 34: Routing behaviour

Figure 34 illustrates the expected behaviour. Initially (part a) of the figure) the switch state is Left, and all its

queues are empty; a package with route Left; Left; Right; Right is about to enter its incoming pipe. The package

enters the incoming pipe (from a) to b) of the figure): the head of the queue representing its route is removed, so

that the content of the queue now represents its remaining route to destination; the switch settings queue records the

28

required setting of the switch for the package to be routed correctly; the switch state remains set to Left; a second

package, with route Right; Right; Left; Right is about to enter the incoming pipe. The second package joins the

incoming queue (from b) to c) of the figure): its remaining route is adjusted; the switch settings queue records the

required setting for this package to be routed correctly; the switch state remains set to Left as the previous package

still requires it. The first package enters the switch (part d) of the figure): the switch setting queue is adjusted to

record the next state required.

At this point there are two possible cases, illustrated in Figure 35. To the left is the situation in which the

package currently in the switch leaves the switch first: in this case, the switch state is set to right, ready for the next

package (the package remaining route is also adjusted as it has entered the incoming pipe of the following switch).

To the right is a misroute situation: the second package enters the switch before the state can be changed to Right,

hence it will necessarily be misrouted.

R

RLR

RR

L R
RLR

LRR

<< MISROUTE >>

Figure 35: Correct routing vs misrouting

With this design, all the complexity is in the model. Operations out(), outLeft() and outRight(), corresponding

to packages entering incoming pipes of switches, will have to be specified to enforce this behaviour. All that is

left for V to do is to sense when switch state changes occur in the model and propagate them to the corresponding

router switches through actuators left [i], right [i].

Note that the changes in the model, which are brought about by solving this sub-problem have to be propagated

to the already solved M and C sub-problems. This means that those problems have to be revisited to modify all

descriptions affected and to check for inconsistency.

3.9.1 Summary of step

This step of analysis combines a number of transformations. The first is a reduction from problem P11 (of

Figure 31) to the reduced problem P15 (of Figure 32). The justification J12 is in terms of the causal relationships

between phenomena and assumptions which can be made of parts of the context that are removed, the latter being

captured by the restated requirement. This is illustrated in the fragment of the analysis tree in Figure 36.a).

The second transformation is a refinement of the description of M , to include a model of the routes. This

leads to revisiting P10, which is transformed into a new problem P16 through re-interpretation of M . The trans-

formation justification J13 is in terms of the design principles applied as well as the reasons that led to M to be

re-interpreted. To solve P16 a new adequacy argument J14 is required. Changes in M affect all sub-problems

in which M appears as given. Hence P14 has to be re-visited and a new argument J15 provided to support the

29

P9

P10 P12P11

P13

J8

J9

P15 P14

J10

J11

J12

P9

P10 P12P11

P16

J13

P15 P14

J10J12

J14 J15

a) b)

Figure 36: Fragment of analysis tree: a) after reduction of P11; b) after re-interpretation of M

adequacy of the solution in the context of the new M description. This is illustrated in Figure 36.b). The final

transformations give a specification for V transforming P15 to P17, with justification J16, then an adequacy

argument J17 of the specification with respect to the requirement to solve the problem. The whole analysis is

represented in Figure 37.

4 Discussion and conclusion

The paper has given an account of how to analyse a problem from the literature by adopting the problem-oriented

approach proposed in [12]. The analysis is based on an explicit representation of the problem and its parts, us-

ing the problem frames notation as a convenient description language, and their systematic transformation. The

analysis we have carried out is summarised in Figure 37. Here, each child problem is derived through a problem

transformation from its parent, with appropriate justification provided, as indicated in the figure.

4.1 Transformations

The paper illustrates what we think is an important characteristic of the framework: that a relatively small set of

techniques is sufficient for an analysis of the problem. These are:

Problem representation. This allows the identification of the major component parts of a problem: the given

domains, which constitute the problem context, with their phenomena and behaviours; the relationship of

the machine to be designed to the other domains and its shared phenomena with the given context; the

requirement to be satisfied by the machine in its context. A justification is required of adequacy of these

initial descriptions, leading to this first problem formulation, as is the case of P0 in Figure 37.

Problem reduction. This transformation allows one to simplify a problem by focusing on the relevant part of the

context. By considering causality, a requirement can be restated allowing a part of the problem context to be

removed from consideration in the problem. The removal of the Package[id] domain in the reduction of P7

to P8 is an example of this transformation.

Architectural expansion. This allows one to structure the machine domain, by making assumptions on its struc-

ture. This is essential for reuse of architectural expertise and artefacts. It has the advantage of simultaneously

30

J7

P0

P1

P3

P4 P5

J1

J2

J0

P2

J3

P6

J4

P7

J5

P8

J6

P9

P10 P12P11

P16

J13

P15 P14

J10J12

J14 J15

P17

J16

J17

P0 Initial problem whose context diagram has no domain descriptions or phenomena annotations (Figure 5)
P1 Initial problem whose context diagram includes domains descriptions and phenomena annotations (Figure 12)
P2 Problem diagram with statement of requirement (Figure 14)
P3 Controller domain expanded into two architectural components (Figure 16)
P4 Conveyor Controller sub-problem
P5 R & R Controller sub-problem
P6 Conveyor Controller sub-problem with reduced context (Figure 17)
P7 R & R Controller sub-problem with reduced context (Figure 18)
P8 Further reduction of R & R Controller sub-problem (removal of Package[id],Figure 20)
P9 R & R Controller domain expanded into three architectural components (Figure 23)
P10 M sub-problem
P11 V sub-problem
P12 C sub-problem
P14 C sub-problem interpreted with a description of C and then solved
P16 M sub-problem re-interpreted with a new description of M and then solved
P15 Reduced V sub-problem (removal of Reading Station and Bin[j] (Figure 31)
P17 V sub-problem interpreted with a description of V and then solved

Figure 37: Tree view of the analysis

31

identifying standard problem decompositions in which composition concerns are already resolved. This was

the case when we applied a variant of the MVC to P8, leading to sub-problems P10, P11 and P12.

Interpretations of descriptions. This is the means by which better understanding is reflected in the probolem. As

knowledge of the real-world and design artefacts increases, this should be captured by descriptions of the

problem components. Given domain descriptions correspond to assumptions upon which problem solving

relies. This was the case for the transformation from P0 to P1. Requirements descriptions may be re-

interpreted because of better understanding of the problem (as we did from P1 to P2) or in order to separate

and address standard concerns, such as safety or security issues. Solution descriptions are provided to solve

the problem and are usually the result of design inventive, rather than of observing and modelling physical-

world phenomena and behaviour. This was the case, for instance, for the description of M leading to P16.

Problem solution. This is the provision of an argument that a solution description is adequate to satisfy the

requirement in its context, hence solves the problem (as in the solution of P16.

As shown in in Figure 37, we have not discussed a solution to P6, hence the initial problem P7 has yet to

be solved. On the other hand, its sub-problem P4 has been solved with adequacy argument the linearization of

justifications and adequacy arguments in its sub-tree, namely:

J6∧J7∧J13∧J14∧J12∧J16∧J17∧J10∧J15

Such a solution will contribute to the solution of P0 once P6 is also solved.

While a full solution specification for P0 has yet to be determined, we know what its architecture will look

like. This is the combination of the architectural expansions applied and is illustrated in Figure 38, where each

component specification provides the solution of the corresponding sub-problems.

C

V

R&R
Controller

architecture

M

Conveyor
Controller

Controller
architecture

Figure 38: Overall architecture of the controller

4.2 Completeness of the analysis

Although the analysis we have conducted touches many aspects of the problem, it does not address all of them.

Interesting sub-problems (some are discussed in [18]) include:

32

destination-bin mapping: such a mapping must be established for the controller to route the packages correctly.

A decision has to be made as to whether this mapping could change dynamically or should be fixed at

initialisation. Including this new aspect of the requirement in the analysis would require a re-interpretation

of the requirement statement followed by either an architectural expansion to include a new component and

corresponding sub-problem, or a re-interpretation of existing components to include some extra functionality

to deal with it.

extending the router layout: it is possible the router layout may be extended over time, for instance to deal with

a larger number of destinations. To preserve the binary tree structure of the tree, its depth would have to be

increased in order to increase the number of bins available. The model would then have to be reconfigured

accordingly, something which is permissible under the proposed specification of M . The treatment of this

problem within the framework would be similar to that of the destination-bin mapping problem.

packages too close together at the reading station: as we do not know what happens if a package arrives while

the reading station is already reading or releasing a package, a possible breakage concern may arise. The

reading station may enter an unknown state should another package arrive at the reading station before the

currently read package has been released. Although the controller has not direct control of the reading

station, it does control the conveyor belt; therefore, indirectly, it may be able to control the rate at which

packages are dropped from the conveyor belt onto the reading station. This would require that packages are

positioned on the conveyor belt at a particular distance, something the controller cannot influence, but that

could be expected, for instance, of a human operator. If that were the case, a domain re-interpretation would

be required to add such an assumption and eliminating the possibility of breakage.

packages jammed in pipes or switches: it is of course possible for packages to get jammed within pipes and

switches and a careful consideration of their physical properties would be required to establish, for instance,

some limits within which a package’s dimensions should fall for the package to be sorted by the router.

A description of such properties would augment domain descriptions, hence lead to re-interpretation. Of

course, it may be the case that even perfectly dimensioned package may still get jammed. In this case a

decision would be required as to how to deal with the problem. It would be possible for the solution not

to be technical at all, but, for instance, by requiring the operator to stop the conveyor manually and recover

the jammed packages (of course, this would add the further problem of alerting the operator of when it is

appropriate to do so to minimise misroute of packages already travelling in the router). Tackling this problem

would require some negotiation with the customer and a decision as to how the requirement or given domain

descriptions should be re-interpreted.

A related issue would be to deal with the following overrun concern [18]: as the packages slide in the pipes

independently of each other, a significant issue arises as to whether the machine’s is able to respond sufficiently

quickly in the situation that two packages arrive almost together. Here, our software problem analysis must move

into the area of real-time systems, and we would suggest that the various strategies that appear in that subject

would be appropriate to discharge this concern: one such is to consider a solution without timing concerns, and

then conduct a worst case timing analysis (wcta) of the ability of the solution to cope with package arrival. Should

33

such a wcta successfully validate the solution’s ability to cope, the solution could be accepted as a solution for the

larger real-time problem. We see no difficulties in applying our framework in this case.

4.3 Reflection on the initial problem representation

A difficulty which arises in the initial characterisation of a problem is deciding which descriptions should be

included as part of a problem context. Some choices were discussed in Section 3.1, where, for instance, we

decided to aggregate the description of a switch with those of the sensors on its incoming and outgoing pipes. Of

course, other choices would have been possible, from separating sensors and switches, to aggregating all router

components into a single domain description.

As a rule of the thumb, separate descriptions should be made only when they add value. For instance, some

parts of the environment may have the only purpose of connecting two others. This is the case of the on/off buttons

in our example between the operator and the controller (this type of domain is known as a connection domain

[18]). In this case, when the operator presses a button, a corresponding command is sent to the controller. An

identity relation could be establish between pairs of phenomena issued by the operator and the switch. If we could

ascertain that the buttons reliably convey operator’s presses to the controller in a timely fashion, we could ignore

the on/off buttons and assume that operator and controller share phenomena directly. This is because an explicit

consideration of this domain wouldn’t make any difference to the problem or its solution. On the other hand,

should the buttons be unreliable, then their inclusion in the analysis may be significant. This is certainly the case,

for instance, in a safety-critical system, where the failure modes of a switch may contribute to the overall safety

assessment of the system.

4.4 Reflection on architectural expansion

In applying architectural expansion in the example, we have assumed we are free to choose the software archi-

tecture with no constraints from the available hardware on which the solution should ultimately be implemented.

This is, of course, not always the case – in mobile devices and embedded controllers hardware capabilities may be

restricted in many ways. The consideration of the relation between software and hardware architectures, and any

required trade-off, is, of course, an important one in design and implementation. It is, however, outside the scope

of this paper, in which we have made the simplifying assumption that the target hardware should be capable of

supporting any chosen software architecture. In a real development such an assumption would have to be validated,

for instance, by consulting a hardware manual.

Usually architectural expansion leads to a number of sub-problems, each corresponding to a part of the archi-

tecture to be (co-)designed. This transformation will often be combined with problem reduction to identify and

separate the relevant parts of each sub-problem. Reduction includes both removing part of the context and rein-

terpreting the requirement. Note that while architectural expansion is always possible – we can always choose an

number of components to make up an architecture – the resulting sub-problems may not necessarily be separable

through reduction like the ConveyorController and R&RController sub-problems of the example. In such cases,

composition concerns need addressing explicitly. The risk of non-separable sub-problems is mitigated when stan-

dard architectures are applied, like the MVC in the example, where the separation the architecture affords already

34

resolves (some of) the composition concerns.

Acknowledgements

We are pleased to acknowledge the financial support of IBM, under the Eclipse Innovation Grants, and the EPSRC,

Grant number EP/C007719/1. Thanks also go to our colleagues in the Centre for Research in Computing at The

Open University.

References

[1] I. Alexander and N. Maiden, editors. Scenarios, stories, use cases through the systems development life-cycle.

Wiley, 2004.

[2] M. Beeson. Some applications of Gentzen’s proof theory in automated deduction. In Proceedings of the

international workshop on Extensions of logic programming, pages 101–156, New York, NY, USA, 1991.

Springer-Verlag New York, Inc.

[3] Y. Bertot, G. Kahn, and L. Théry. Proof by pointing. Theoretical Aspects of Computer Science (TACS), 1994.

[4] J. Brier, L. Rapanotti, and J. G. Hall. Problem frames for socio-technical systems: predictability and change.

In Proceedings of 1st International Workshop on Applications and Advances of Problem Frames, pages 21–

25. IEEE CS Press, 2004.

[5] A. Bundy. A survey of automated deduction. In M. Wooldridge and M. Veloso, editors, Artificial Intelligence

Today, volume 1600 of LNAI, pages 153–174. Springer-Verlag Berlin Heidelberg, 1999.

[6] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2001.

[7] K. Cox, J. G. Hall, and L. Rapanotti. Editorial: A roadmap of problem frames research. Journal of Informa-

tion and Software Technology, 47(14):891–902, 2005.

[8] W. M. Farmer, J. D. Guttman, and F. J. Thayer. Imps: An interactive mathematical proof system. Journal of

Automated Reasoning, 11(2), 1993.

[9] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Professional, 2002.

[10] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave. A reference model for requirements and specifications.

IEEE Software, 17(3):37–43, 2000.

[11] J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Rapanotti. Relating software requirements and ar-

chitectures using problem frames. In 10th Anniversary IEEE Joint International Conference on Requirements

Engineering (RE 2002), pages 137–144, Essen, Germany, 2002. IEEE Computer Society.

[12] J. G. Hall and L. Rapanotti. A framework for software problem analysis. Technical Report 2005/05, Depart-

ment of Computing, The Open University, 2005.

35

[13] J. G. Hall, L. Rapanotti, and M. Jackson. Problem frame semantics for software development. Journal of

Software and Systems Modeling, 4(2):189 – 198, 2005.

[14] J. Hammond, R. Rawlings, and A. Hall. Will it work? In The proceedings of the 5th IEEE International

Symposium on Requirements Engineering., 2001.

[15] M. Jackson. Problem frames and software engineering. Information and Software Technology, 47(14):903–

912, 2005.

[16] M. A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles and prejudices.

ACM Press. Addison-Wesley Publishing Company, 1995.

[17] M. A. Jackson. Problem analysis using small problem frames. South African Computer Journal 22: Special

Issue on WOFACS98, pages 47–60, 1998.

[18] M. A. Jackson. Problem Frames: Analyzing and Structuring Software Development Problem. Addison-

Wesley Publishing Company, 1st edition, 2001.

[19] M. A. Jackson. Some basic tenets of description. Software and Systems Modeling, 1(1):59, 2002.

[20] M. A. Jackson. Why software writing is difficult and will remain so. Information Processing Letters, 88(1-

2):13–15, 2003.

[21] S. C. Kleene. Introduction to Metamathematics. Van Nostrand, Princeton, NJ., 1964.

[22] A. Krabbel, I. Wetzel, and H. Züllighoven. On the inevitable intertwining of analysis and design: developing

systems for complex cooperations. In DIS ’97: Proceedings of the conference on Designing interactive

systems, pages 205–213, New York, NY, USA, 1997. ACM Press.

[23] G. E. Krasner and S. T. Pope. A cookbook for using the model-viewcontroller user interface paradigm in

smalltalk-80. Journal of Object-Oriented Programming, 1(3):26–49, August 1988.

[24] P. Kruchten. The Rational Unified Process: An Introduction, volume 2nd Edition of Object Technology

Series. Addison-Wesley, 2000.

[25] C. Larman. Applying UML and patters. Prentice Hall, 2nd edition, 2002.

[26] D. Lea. Design patterns for avionics control systems. Technical Report DSSA Adage Project ADAGE-OSW-

94-01, State University of New York, November 1994.

[27] Z. Li, J. G. Hall, and L. Rapanotti. A constructive approach to problem frame semantics. Technical Report

2004/26, Computing Department, The Open University, 2005. Submitted to FASE’05.

[28] Z. Li, J. G. Hall, and L. Rapanotti. From requirements to specification: a formal perspective. In J. G. Hall,

L. Rapanotti, K. Cox, and Z. Jin, editors, Proceedings of the 2nd International Workshop on Advances and

Applications of Problem Frames. ACM, 2006. To appear.

[29] B. Nuseibeh. Weaving together requirements and architectures. IEEE Computer, 34(3):115–117, 2001.

36

[30] OMG. Unified Modeling Language (UML), version 2.0. http://www.omg.org/technology/documents/formal/uml.htm.

[31] L. Rapanotti, J. G. Hall, M. Jackson, and B. Nuseibeh. Architecture-driven problem decomposition. In

12th IEEE International Conference on Requirements Engineering (RE 2004), pages 80–89. IEEE Computer

Society, 2004.

[32] L. Rapanotti, J. G. Hall, and Z. Li. Problem reduction: a systematic technique for deriving specifications

from requirements. Technical Report 2006/02, Centre for Research in Computing, 2006.

[33] S. Robertson and J. Robertson. Mastering the Requirements Process. Addison Wesley, Harlow, England.,

1999.

[34] R. Seater and D. Jackson. Problem frame transformations: Deriving specifications from requirements. In 2nd

International Workshop on Advances and Applications of Problem Frames, 2006.

[35] W. Swartout and R. Balzer. On the inevitable intertwining of specification and implementation. Commununi-

cations of ACM, 25(7):438–440, 1982.

[36] W. M. Turski. And no philosophers’ stone, either. INFORMATION PROCESSING, 86, 1986.

[37] A. van Lamsweerde. Requirements engineering in the year 00: a research perspective. In International

Conference on Software Engineering, pages 5–19, 2000.

[38] E. S. Yu. Modeling organizations for information systems requirements engineering. In Proceedings 1st

IEEE International Symposium on Requirements Engineering, pages 34–41, 1993.

[39] P. Zave and M. A. Jackson. Four dark corners of requirements engineering. ACM Transactions on Software

Engineering and Methodology, 6(1), 1997.

37

