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Abstract
Standards mandate the demonstration of safety prop-

erties for industrial software,  starting at the initial re-
quirements phase. The processes involved are iterative, 
with the choice of potential solution architecture being a 
driver for the discovery of system failure modes. Manag-
ing the resulting development is a complex task.

Problem Oriented Software Engineering brings to-
gether many non-formal and formal aspects of software 
development,  providing a structure within which the re-
sults of different development activities can be combined 
and reconciled. 

This paper illustrates how problem orientation can 
support the development task of a safety-critical system 
through its ability to elaborate, transform and analyse 
the project requirements, reason about the effect of par-
tially detailed candidate architectures, and traceably 
audit design rationale through iterative development. 
The approach is validated through its application to an 
industrial case study. 

1. Introduction
Ensuring adequate safety is a crucial factor in the 

deployment of many embedded systems, including those 
used in avionics applications.  This concern has been 
captured in safety standards such as the UK Defence 
Standard 00-56 [21] and the international IEC 61508 [8]. 
These standards require hazard identification and pre-
liminary hazard analysis to occur in the early phases of 
the development process (e.g.  [16]). This is consistent 
with studies that have shown that a large proportion of 
anomalies occur at the requirements and specification 
stages of a system development [4], [11]. Further, the 
anomalies of interest are not restricted to just component 
or functional failure, but include significant contribu-
tions from factors that are emergent properties of the 
interactions of complex systems [11], [18]. A study by 
Lutz concluded that safety-related software errors arose 
most often from inadequate or misunderstood require-
ments [14].  Other work has highlighted the need to con-

duct a safety analysis of the requirements [3], [5]. These 
factors all support the notion that safety must be built 
into the design, and that the evolving design representa-
tions analysed to demonstrate that they have the desired 
safety properties [13].

The goal of this paper is to demonstrate how the 
Problem Oriented Software Engineering (POSE) frame-
work [6] can be used to support directly the process of 
formulating a requirements model that can undergo haz-
ard identification and preliminary hazard analysis – 
called Preliminary Safety Analysis (PSA) in this paper –
as required by the safety standards (e.g. [21]). The result 
is a revised requirements model that is known to be able 
to satisfy its identified safety requirements and thus 
forms a good basis for the remainder of the development 
process. The approach is validated through its applica-
tion to a real avionics system. In this work, PSA consists 
of simple logic proofs to demonstrate systematic cor-
rectness [15], Functional Failure Analysis (FFA) [17] to 
identify safety hazards and issues, and functional Fault 
Tree Analysis (FTA) [23] to resolve them. These tech-
niques are well defined in their respective references and 
only the results of applying them are considered in this 
text. 

The paper is organised as follows: background and 
related work are presented in Section 2. The basics of the 
POSE framework are described in Section 3. Section 4 
demonstrates the use of POSE on a case study involving 
the development of requirements and high level architec-
ture for a component of an aircraft warning system. Sec-
tion 5 contains a discussion and conclusions.

2. Background and related work
The work presented in this paper is based on a 

multi-level safety analysis process typical of many in-
dustries. For example, commercial airborne systems are 
governed by ARP4761 [20]. ARP4761 defines a process 
incorporating Aircraft FHA (Functional Hazard Analy-
sis), followed by System FHA, followed by PSSA (Pre-
liminary System Safety Assessment, which analyses the 



2

proposed architecture). This paper is concerned with the 
latter, PSSA, but uses PSA in place of PSSA.

The view of requirements in this paper follows the 
fundamental clarification work of Jackson [24] and Par-
nas [2] which distinguishes between the given domain 
properties of the environment and the desired behaviour 
covered by the requirements. This work also distin-
guishes between requirements that are presented in terms 
of the stakeholder(s) and the specification of the solution 
which is formulated in terms of objects manipulated by 
software [22]. Therefore there is a large semantic gulf 
between the system level requirements and the specifica-
tion of the machine solution. One of the goals of apply-
ing POSE is to bridge this gulf by transforming the sys-
tem level requirements into requirements that apply 
more directly to the solution.

The POSE notion of problem used in this work fits 
well with the Parnas 4-Variable model, which has been 
used by Parnas et al. as part of a table driven approach 
[2]. This model and table-based approach is particularly 
well suited to defining embedded critical applications. 
This is demonstrated by the fact that they form the basis 
for the SCR [1], and the RSML methods.  The RSML 
work led to the SpecTRM [12] methods, which form part 
of a human centred, safety-driven process which is sup-
ported by an artefact called an Intent specification [13]. 
The work in this document covers much of the second 
level System Design Principles of the Intent specifica-
tion,  and thus is complementary to the third level Black-
box level provided by SpecTRM. 

The work of Anderson, de Lemos, and Saeed [3] 
share many of the principles and concepts that have 
driven the development of this work. Particularly the 
notions that safety is a system attribute and the need to 
apply a detailed safety analysis to the requirements 
specifications. The main advantages of the POSE ap-
proach over that work are: (a) it provides a framework 
for transforming requirements; (b) it is rich in traceabil-
ity; and (c) the models it uses are suitable for the safety 
analysis. The latter means it is efficient because there is 
no need to develop “new” models (with all its attendant 
validation problems) just to perform the PSA. Further, 
the traceability makes it particularly suited for use with 
standards such as DS 00-56 [21] and the DO-178B [19] 
software guidelines.

3. Problem Oriented Software Engineering
Problem Oriented Software Engineering (POSE, 

[6]) brings together many non-formal and formal aspects 
of software development, providing a structure within 
which the results of different development activities can 
be combined and reconciled. Essentially,  the structure is 
the structure of the progressive solution of a system de-
velopment problem; it is also the structure of the ade-
quacy argument that must eventually justify the devel-
oped system. POSE does not prescribe any particular 
development process; rather it identifies steps of devel-

opment which may be accommodated within the devel-
opment process chosen. Other work has illustrated the 
solution of mission-critical development problems under 
POSE [7].

In this paper, we show how POSE fits within a 
safety-critical development context,  such as that defined 
by DS 00-56 [21].  The process we support is that of for-
mulating a requirements model for a safety-critical sys-
tem that can undergo hazard identification and prelimi-
nary hazard analysis as required by the safety standards. 
This process is complex and iterative in that design 
choices affect requirements, and vice versa.  For this 
complex process,  we show how POSE could be used to: 
a) provide revised requirements statements together with 
a design that is known to satisfy them; and b) provide 
rich traceability and record design rationale throughout 
the iterative development.

Under POSE, problems requiring solution, i.e., re-
quirements in context, are transformed into other prob-
lems that are easier to solve, or that will lead to yet other 
problems that are easier to solve. Problem transforma-
tions capture discrete steps in the solution process. The 
following classes of transformation are recognised in the 
framework:

Representation: The initial transformation covering 
the identification of the major component parts of a 
problem: the given domains (problem context), with 
their phenomena and behaviours; the machine to be de-
signed and its shared phenomena with the context; the 
requirement to be satisfied by the machine in its context.

Interpretation: As analysis proceeds, knowledge of 
the real-world and designed artefacts increases and this 
will be captured by changes in the respective domain and 
requirement descriptions. Example of the use of interpre-
tation include: capturing further detail of a domain’s de-
scription; and using experience and engineering knowl-
edge to select a solution architecture. Requirements may 
also be interpreted when, for instance,  better understand-
ing is reached of a customer’s requirements, or in order 
to separate and address standard concerns, such as safety 
or security.

Reduction: This allows one to simplify a problem by 
removing domains from the context, simultaneously 
changing the requirement to preserve the solution.  It is 
an essential transformation in the framing of sub-
problems and the derivation of specification statements 
from requirement statements.

Solution: This provides justification that a solution 
description is adequate in solving, that is, in its context, 
it satisfies the problem’s requirement.

Each defined problem transformation transforms 
problems in a way that respects solution adequacy. What 
this means is given by their general form: 

For problems P, P1,…,Pn, with solutions S, S1,…, 
Sn, respectively, that a problem transformation 
transforms problem P to the problems Pi, i =1,...,  n, 
with justification J,  means that under the transfor-
mation, S is a solution of P with adequacy argument 
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(A1 & A2 &  ... &  An) & J whenever S1,...,  Sn are 
solutions of P1,..., Pn, with adequacy arguments 
A1,..., An, respectively. 

The justification J for the transformation will not,  in 
general, be formal and so the transformations of the 
framework need not be sound in any formal sense: the 
informality of the subject matter precludes fully formal 
treatment of some transformations. Illustrations of the 
forms of justification we admit are given later in the pa-
per, however, as an example, one justification we use is 
that of an engineer deeming an extant component to be 
appropriate as part of the solution; the ramifications of 
this being incorrect are discussed in Section 4.

Problems are transformed from more complex to 
less complex and, in general, it cannot be known during 
transformation application whether a future solution will 
satisfies a requirement until that solution is actually 
built. All the transformation says is that, if solutions to 
the simpler problems can be found then so can a solution 
to the more complex problem. During development, 
then, often the best we can do is to ensure that future 
design choices, such as that of a high-level architecture, 
do not make it impossible to satisfy the requirements, 
and that this be recorded in the justification. As a simple 
example of what we mean, consider that one should not 
choose a processor that is known to be very unreliable as 
the basis of a safety-critical system as such a processor is 
unlikely to meet safety-critical requirements; the best 
that can be done is to choose an ultra-reliable processor 
noting,  however, that even this choice does not guarantee 
that the requirements will be met, as there are many 
other factors that could impact the satisfaction of the 
safety requirements.

For definiteness and precision, the original POSE 
framework [6] is presented as a Gentzen-style sequent 
calculus [10]. In this paper, as in others, we use the 
graphical notation of the closely related Problem Frames 
approach (PF, [9]) for illustration. 

Both POSE and PF regard a problem as require-
ments in a real-world context. A context is a set of (pos-
sibly) interacting domains described in terms of their 
indicative properties; each domain description captures a 
part of the real-world which is of interest in the problem; 
a requirement is a statement – written in the optative 
mood – of what should be true (or what should turn out 
to be true) of the context given an operating solution to 
the problem. A solution is simply the description of a 
domain, representing a machine whose behaviour is con-
strained by a developed program, that solves the prob-
lem. Thus, a software problem challenges us to find the 
solution that, in the given context, brings about the re-
quirement. 

A thorough treatment of PF is beyond the scope of 
this paper, but can be found in [9]. Here we give a short 
overview of problem diagrams - the notation used by PF 
to represent problems - through the example in Figure 1. 
The problem is to specify a solution machine called FAS 
(represented as a double-barred box), which interacts 

with real-world domains Speaker, Catastrophic System, 
System 1, etc.  (represented as boxes) in such a way that 
the requirement R (represented as a dotted oval) is satis-
fied.  Links between solution machine and real-world 
domains capture relevant shared phenomena (e.g., enti-
ties, values, events, commands or operations). For in-
stance, in Figure 1, FAS shares phenomenon `message’ 
with Speaker; that such a phenomenon is controlled by 
FAS is indicated by the ‘!’. The requirement is linked to 
domains whose properties and phenomena are referred to 
or constrained by the requirement. For instance, the dot-
ted line between R and Catastrophic System indicates 
that R refers to phenomenon cat, while the dotted arrow 
between R and Pilot indicates that R constrains phe-
nomenon audio. Appropriate descriptions of its solution, 
domains, requirement and phenomena are associated 
with a problem diagram in the course of analysis, as we 
will see in the case study of the next section.

4. Case study
The case study concerns the design of a Failure An-

nunciation System (FAS) that is part of a military air-
craft. The FAS is a component of an actual operational 
System Failure Warning System (SFWS) flying today. 
The SFWS contains a number of other communication 
functions but these do not impact the function being con-
sidered, and hence have been omitted from the study for 
reasons of brevity.  In this sense, the case study is simpli-
fied but much of the interesting complexity of the system 
remains. 

Here we have fitted POSE within a traditional 
safety-critical system development process, that of DS 
00-56 [21]. The case study assumes that an aircraft level 
safety analysis has been completed and that this has allo-
cated safety requirements to the main aircraft systems, of 
which the SFWS is one. It also assumes that a system 
safety analysis of the SFWS has been completed and that 
this has allocated requirements to its sub-systems, in-
cluding the FAS.  In this way the safety requirements for 
the FAS (H1 & H2, see Section 4.1) are defined and allo-
cated to it.  Below we give a POSE characterisation of 
the problem and transform it, using POSE, to a design 
suitable for carrying out a PSA. As the PSA highlights 
problems with the design, we then show how to rethink 
design, with POSE providing backtracking and traceabil-
ity.

4.1 Overview of the system
In a real aircraft, the SFWS monitors a number of 

the aircraft’s sub-systems, warning the pilot if one of the 
monitored systems has failed.  The SFWS comprises three 
diverse warning systems: (a) the Failure Annunciation 
System (FAS) which provides audio warnings through a 
speaker; (b) a visual warning system that drives a dedi-
cated warning display panel in the cockpit; and (c) a vis-
ual warning system that sends warning messages to the 
pilot’s main display.



4

Typically, the monitored systems include: inertial 
navigation; GPS navigation; aircraft data; environment 
data; and health monitoring. Failure of these systems 
will,  typically,  not prove insurmountable by the pilot.  In 
contrast,  a failure in the Catastrophic System (part of the 
flight control system) could result in the loss of the air-
craft and/or pilot.

The SFWS safety requirement allocated by the air-
craft level system safety analysis identifies the following 
SFWS failures as hazards to be considered:

H1: Inadvertent indication of the Catastrophic 
message.

H2:  Failure to indicate the Catastrophic message.
These two hazards do not have the same nature: 

hazard H1 is particularly problematic because of the ac-
tion the pilot has to take if the Cat fail message is 
played. The inadvertent indication of Cat fail is regarded 
as an event to be avoided. As a result, it is classified as 
safety critical, and assigned a target failure probability of 
10-7 fpfh (failures per flight hour). 

In contrast, hazard H2, the failure of one of the 
SFWS systems to indicate a Catastrophic System failure, 
is mitigated by the remaining two SFWS systems, which 
are intentionally diverse in operation. Hence H2 is clas-
sified only as safety related, and assigned a target failure 
probability of 10-5 fpfh.

In the following, we focus on the development of 
the FAS.  In particular, we show how POSE applies to 
formulate the specification of the embedded computer 
control system that controls the selection and generation 
of audio warning messages. Moreover,  we demonstrate 
how POSE assists in the development of an architectural 
model that is capable of satisfying its H1 and H2 safety 
requirements.

A first representation of the FAS problem is given by 
problem PInitial in Figure 1, expressed as a problem dia-
gram. In the figure, the FAS can be seen to monitor di-
rectly the status of the Catastrophic System using a dis-
crete input (cat). It also monitors the status of other three 
systems, Systems 1, 2 and 3,  representing the various 
sub-systems of the aircraft, by interrogating their health 
status messages (sys1, sys2 and sys3, respectively). The 
FAS issues warning audio messages to the pilot via a 
speaker.

Figure 1 The FAS problem 
(problem PInitial)

The functional aspects of the requirement R for the 
FAS are:

Ra: When health monitoring indicates that a 
monitored system has failed, the system 
should play the correct audio message to 
pilot.

Rb: The message levels should be comfortably 
heard by the pilot. 

Rc: If more than one system has failed, then 
messages should be selected for play in the 
order: Cat fail, Sys1 fail, Sys2 fail and Sys3 
fail. 

Rd: If no system failures are detected,  then no 
message should be played.

As well as Ra, Rb, Rc and Rd, FAS should also sat-
isfy the safety targets set by the aircraft system level 
safety analysis.  Recognising this we add safety require-
ment RS to R:

RS:  For hazards H1 and H2, their respective 
safety targets (10-7fpfh and 10-5fpfh) must be 
satisfied.

The overall requirement R is Ra & Rb & Rc & Rd 
& RS is indicated in the dotted ellipse in Figure 1. A 
complete statement of R should also include require-
ments that cover space, weight, interfaces, maintenance 
and so on, but these are beyond the scope of this work.

4.2 A FAS candidate architecture
Safety-critical developments are subject to many of 

the same constraints as other developments,  with system 
cost being an important consideration.  Because of this, 
we will make use of off-the-shelf components for Failure 
Detection (the FD component), for Audio Output Selec-
tion (the AO Selector component) and for Audio Output 
Decoding (the AO Decoding component), combining 
them together with a (still to be designed) Failure An-
nunciator Controller (FA).

The FD is shown in Figure 2. It receives health 
status information about Systems 1,  2 and 3, which it 
decodes and sends to the FA via its Status signal. In addi-
tion,  it monitors the Catastrophic System’s discrete input 
cat which it also sends to the FA via its Status signal. The 
Control Decoder prioritises the failure data to send to the 
FA.

TX
Store

Message
Tx/Rx

Control
Decoder

Message
Buffer

CS!{cat}

S1!{sys1}

S2!{sys2}

S3!{sys3}

FD!{Status}

Figure 2 The Failure Detection component FD 
The combination of the AO Selector and AO De-

coder is shown in Figure 3. Their combined role is to 
output the audio signal of the message selected by the 
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FA. The AO Selector is an FPGA-based device, contain-
ing a library of digital audio messages stored in PROM. 
The AO Decoder decodes the selected digital message 
and turns it into an audio wave for the speaker.

Selector Memory

Decoder

Message

FA!{Sel}

Amplifier
Volume
Limiter

AOD!{message}

AO Selector

AO Decoder

AOS!{dMessage}

Figure 3 The Audio Output components

FA!{Sel}

FDFA

AO Selector

AO Decoder

AOS!{dMessage} AOD!{message}

FD!{Status}

CS!{cat}

S1!{sys1}

S2!{sys2}

S3!{sys3}

Figure 4 The candidate architecture for FAS

Comprising four components, a candidate architec-
ture for FAS is shown in Figure 4 and, given the initial 
representation of the problem PInitial, we may introduce 
this candidate architecture (using the POSE transforma-
tion Solution Interpretation) the result being problem 
PInterpreted shown in Figure 5. 

Figure 5 Solution Interpretation of FAS 
(problem PInterpreted)

From the figure, we see that the to be designed 
component FA should take in the failure status informa-
tion from the FD, process it, then send out the appropri-
ate audio message request to the AO Selector. If no fail-
ures are reported by the FD,  then the FA sends no mes-

sage request to the AO Selector, otherwise the FA sends 
out the highest priority message request. 

The justification J1 that this step is adequate is sim-
ply engineering judgement: that the candidate architec-
ture is a suitable starting point for the design. (Both 
problem and justifications are named so that we can eas-
ily refer to them later.)

4.3 Simplifying the problem
With the introduction of the candidate architecture, a 

PSA is required to see whether the architecture can 
safely be the basis of the FAS. However, the problem has 
become quite complex, and we want to simplify it as 
much as possible to remove any factors that will unnec-
essarily complicate the PSA.

Under POSE, problem simplification is achieved 
through Problem Reduction which allows domains to be 
removed from the context whilst simultaneously rewrit-
ing the requirement to compensate for their removal. For 
reasons of brevity, only an outline of the transformation 
can be given here; a thorough presentation can be found 
in [6], [7].

Generally, domains furthest from the machine are 
removed first: in this case the first domain to be removed 
will be the Pilot. This reduction consists of two trans-
formation steps. Firstly, the requirements relating to the 
Pilot are transformed to relate to the Speaker domain. 
For example, Ra contains the term “Play the correct 
audio message to the pilot”. Under the transformation, 
this will be rephrased to refer to the Speaker by making 
(and justifying) transformations from Pilot-oriented phe-
nomena into Speaker-oriented phenomena; similarly for 
Rb (see below). Secondly, to complete the domain re-
moval of the Pilot, we record assumptions that need to 
be in place for consistency. In this case, this will include 
the assumption that the Pilot can actually hear the mes-
sage as it issues from the Speaker. That we rely on this 
assumption holding is the justification J2 for this reduc-
tion.  Transforming R in this way yields a new require-
ment statement,  that we will call R1, in which Ra be-
comes R1a and Rb becomes R1b (shown below). Rc and 
Rd are not changed by the transformation (they do not 
mention Pilot phenomena) and become R1c and R1d 
unchanged, respectively. RS remains unchanged too. The 
resulting problem, with requirement R1 = R1a & R1b & 
R1c & R1d & RS, is shown in Figure 6.

The revised R1a and R1b are:
R1a: When health monitoring indicates that a 

monitored system has failed, play the correct 
audio message through the Speaker.

R1b: The message levels should be at 60dB above 
the ambient cockpit level.
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Figure 6 Pilot domain removal 
(problem PRed1)

There are a number of domain removals that follow, 
which, for brevity, we do not illustrate with figures.  The 
next domain removed is the Speaker. As before this in-
volves two steps. In this case R1 is transformed into R2, 
and further assumptions are added to cover the removal 
of the Speaker domain. This time R1a and R1b that refer 
to the Speaker have to be re-phrased in terms of the AO 
Decoder audio output stream that drives the Speaker, to 
become R2a and R2b:

R2a: When health monitoring indicates that a 
monitored system has failed, the AO De-
coder should generates a sequence of audio 
signals that corresponds to the correct sys-
tem fail message. 

R2b: The audio sequence amplitude levels are 
within the defined range. 

As before R1c becomes R2c, and R1d becomes R2d 
without change, and RS is unchanged too. The domain 
removal assumption is that the audio output stream pro-
vided by the AO Decoder correctly drives the Speaker 
within the specified comfortable audio range, to produce 
the desired warning message (justification J30).

There is still a wide gulf between the phenomena 
that FA understands (to do with message selection) and 
the requirement R2a, which talks about audio sequences. 
Further reduction is required.

Our next goal is to remove the AO Decoder domain. 
To do so, we need to consider that it consists of a volume 
limiter, an amplifier and the digital to analogue decoding 
block (Decoder), as shown in Figure 3. 

Removing the Volume Limiter does not affect R2a, 
R2c or R2d, these becoming R3a, R3c and R3d directly. 
However, it requires R2b to be modified to remove the 
upper limit. The latter becomes one of the assumptions 
of the domain removal, i.e., removing Volume Limiter 
adds the assumption that the analogue drive to the 
Speaker will be limited to be within a maximum sound 
output,  with the result that the audio will not be uncom-
fortably loud (justification J31). 

R3b:  The audio sequence amplitude levels are 
within comfortable levels. 

Removing Amplifier does not affect R3a,  R3c or 
R3d which become R4a, R4c and R4d, respectively. 
However, R3b is, effectively, removed, becoming an 
assumption that there will be a defined audio signal gain 
from input to output, i.e., the audio will be loud enough 
to be comfortably heard, (justification J32). Other as-

sumptions concerned with signal quality (e.g.,  distortion 
removal) might also be added at this point. 

Removing Decoder does not affect the requirement 
R4c, which becomes R5c. However, the Decoder block 
transfers byte streams into analogue audio signals; there-
fore the requirements R4a and R4d and the transfer func-
tion through Decoder are key elements of the transfor-
mation. The removal of Decoder requires R4a to become 
R5a and R4d to become R5d as follows:

R5a: When health monitoring indicates that a 
monitored system has failed, then AO 
Selector should generate a sequence of bytes 
that corresponds to the selected system fail 
message.

R5d: If no system failure is detected then the AO 
Selector block should generate no message.

The assumption is that this sequence of bytes, when 
appropriately decoded,  will produce the desired audio 
signal, i.e., the correctness of the domain transfer func-
tion for Decoder becomes an assumption that is added to 
the requirements when the Decoder domain is removed 
(justification J33).

The requirement R5 is R5a & R5c & R5d & RS 
together with the set of assumptions associated with the 
domains removal. At this point,  R5 talks about “selected 
system fail message” which corresponds directly to the 
phenomena shared between FA and AO Selector. Also, 
inspection of the FD phenomena and their comparison 
with the R5 monitoring terminology indicates that they 
are equivalent. That is, R5 talks about “when health 
monitoring indicates that that monitored system has 
failed” and this corresponds directly to the Cat and mes-
sage status data that is sent via Status. Hence,  removing 
Catastrophic System, and Systems 1, 2 and 3 leaves R5 
unchanged, with the resulting problem, PReduced, being 
that shown in Figure 7. (This rationale becomes J34, the 
justification for the removal of the monitored systems: 
there is no need to rewrite R5.)

Figure 7 The reduced FA problem
(problem PReduced)

4.5 Formalising the requirements
It is a simple step to formalise the requirements for 

input to the PSA. The corresponding POSE transforma-
tion is Requirements Interpretation which, with adequate 
justification, allows a requirement to be rewritten in an 
equivalent form. The non-safety aspects of the require-
ment can be formalised into Parnas Table-like form, with 
the resulting requirement shown in Table 1.
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Table 1 Formalised R5, prior to PSA
Monitor Condition Constraint

CAT = on Sel = Cat fail

CAT ≠ on ∧ Sys1fail Sel = Sys1 fail

CAT ≠ on ∧ Sys2fail Sel = Sys2 fail

CAT ≠ on ∧ Sys3fail Sel = Sys3 fail

CAT ≠ on ∧ Sys4fail Sel = null

RS: H1 (10-7), H2 (10-5) safety targets must be satisfied

4.6 Preliminary Safety Analysis 
The solution preserving nature of problem transfor-

mation under POSE leaves us at a point at which the 
solution of the reduced FA problem will also be a solu-
tion of the initial problem. Note that this does not mean 
that there is,  necessarily, a solution to the reduced FA 
problem. In fact it turns out from a PSA that the chosen 
candidate architecture is not a suitable basis for a solu-
tion,  and it will have to be reworked: the process is nec-
essarily iterative.

In general, the goal of a PSA is to: (a) confirm any 
relevant hazards from the system level hazard list; (b) 
identify if further hazards need to be added to the list; 
and (c) then analyse an architecture to validate that it can 
satisfy the safety targets associated with the identified 
relevant hazards. In this case, within the POSE, the PSA 
goal is also to determine whether a solution to the re-
duced FA problem exists. A number of techniques can be 
applied to perform a PSA. This work uses a combination 
of mathematical proof, Functional Failure Analysis 
(FFA) [17] and functional Fault Tree Analysis (FTA) 
[23].

The POSE framework structuring and the phased 
development means that relatively simple formal re-
quirements (as in Table 1) can be developed that apply 
directly to the solution machine.  Simple logic proofs 
demonstrate that R5 (Table 1) has the required functional 
properties. Therefore, the remaining feasibility check at 
this level is to demonstrate that the hardware reliability 
of the design blocks,  i.e., those of Figures 2 and 3,  can 
satisfy the safety requirement RS.

The FFA can be used to identify any additional rele-
vant hazards or, more likely, it will identify credible fail-
ure modes that result in an existing hazard. The FFA 
should be applied to each architectural component in 
turn. Functional FTA can then be used to analyse if the 
events identified by the FFA satisfy the targets contained 
in RS.

There is insufficient space to present the full PSA, 
hence we summarise only the main elements of the AO 
Selector analysis to demonstrate the process followed. 
The significant results from applying FFA to the AO 
Selector are shown in Table 2. 

Table 2 AO Selector FFA Results

Id Failure Mode Haz

F1 Plays no messages – no Cat fail when re-
quired.

H2

F2 Plays Cat fail message too late. H2

F3 Plays wrong message – inadvertent Cat fail. H1

F4 Plays wrong message – no Cat fail when 
required.

H2

F5 Plays too loud – Pilot switches system off. H2

F6 Plays too softly – Cat fail not heard. H2

FTA, applied to the AO Selector architecture (refer 
back to Figure 3), with F1 to F6 as the top events, is used 
to establish if the architecture can satisfy its targets. F3 is 
dominated by the known failure rate of the FPGA that 
would implement the AO Selector functionality. This 
indicates that the failure rate for F3 is 3x10-7 fpfh which, 
therefore, does not satisfy the target for H1. The result is 
that the FPGA AO Selector component will need to be 
rethought in order to meet all safety requirements.

The POSE development so far is captured in Figure 
8 as a tree (without branching). The tree is notable in 
that, from the PSA, PReduced has no solution, and so there 
is no further development to be done. Therefore, we 
must backtrack the development to the point at which the 
architecture was introduced, and continue afresh. How 
this is done is shown next.

J30 & J31 & J32  &  J33

PReduced

PInitial

PRed1

PInterpreted

...

J1

J2

Figure 8. The development prior to the PSA
4.7 Rethinking the architecture

To address its shortcoming, a modified FPGA AO 
Selector component is developed to: (a) include sending 
back the message identifier of the currently playing mes-
sage to the FA in a status message; and (b) add a mute 
input to the FA control that allows the FA to mute audio 
output if the message identifier does not tally with the 
required message to be played. (Although the design of 
the modified AO Selector component could be done 
within POSE, for reasons of brevity, we have not done 
this.)

A derived requirement DR is also introduced to the 
effect that, if the message identifier is not the same as the 
currently playing message, then audio must be inhibited, 
audio otherwise being allowed.
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Selector Memory

Message

FA!{Sel}

Mute
FA!{Mute}

Id
AOS!{id}

AOS!{dMessage}

Figure 9. Modified AO Selector 
The changes to the AO Selector are shown in Figure 

9. The POSE development must also backtrack to allow 
the reintroduction of the new architecture. To do this the 
tree of Figure 8 is pruned back to the node labelled PInitial 
at which point the new architecture is introduced result-
ing in Figure 10. 

AOS!{dMessage}

Catastrophic
System

System 1

Pilot

FD

CS!{cat}

R

{cat}

System 2

System 3

Speaker

S1!{sys1}

S2!{sys2}

S3!{sys3}

{sys1}

{sys2}

{sys3}

{audio}

FA

AO Selector'

AO Decoder
S!{audio}

AOD!{message}

FD!{Status}

FA!{Sel,Mute} AOS!{id}

Figure 10. Introducing the second candidate 
architecture for AO Selector’ 

(problem P’Interpreted)
The justification (J’1) for the introduction of the new 

architecture is notable in that it should justify the choice 
of the new architecture over the old. One way to do this 
is to include the pruned part of the tree in the justifica-
tion,  adding a note to the effect that this was the reason 
for the choice of new architecture. 

Note that DR also introduces additional failure 
modes. For example, mute failing on is a form of F6 (see 
Table 2). It should also be noted that F2 can be consid-
ered to be a form of F1 in the limit.  Table 3 shows the 
results of repeating the FFA, collating results and then 
performing the FTA with the new architecture. The Tar-
get – shown in brackets after the FTA calculation result – 
is the most severe probability applicable (e.g.,  the H1 
target, 10-7 fpfh, used for first two terms). 

Table 3. Collated PSA results for AO

Collated Failure Mode FTA Haz.

Wrong message played, correct id  10-12 (10-7) H1&H2

Wrong messaged played, expected 
id

 10-13 (10-7) H1&H2

Correct message, wrong or no id.  10-7 (10-5) H2

No message played: mute fails/too 
soft

 10-6 (10-5) H2

Message played too loud  10-6 (10-5) H2

The worst effect of “Message played too loud” is 
considered to be that the pilot switches the FAS off to 
avoid the distraction – this equates to hazard H2, so the 
H2 target is used. Mitigation for this failure mode is pro-
vided by the Volume Limiter circuitry which is part of the 
AO Decoder (see Figure 3). Inspection of the analysis 
results in Table 3 indicates that the modified AO 
Selector’ architecture is adequate for this aspect of the 
safety targets, and therefore it is valid to use it to con-
tinue with the development.

A similar analysis is applied to the FD domain and 
satisfactory results are obtained. Therefore, the modified 
FAS architecture can be argued not to prevent satisfaction 
of both the functional and safety target (RS) require-
ments, and hence is a suitable basis for the remainder of 
the development process, that is, designing FA.

The problem development forward from this point is 
similar to that previously: problem reduction is applied 
to arrive at the reduced FA problem of Figure 11.

Figure 11. New reduced FA problem 
(problem P’Reduced)

4.8 Towards a specification for FA
In this section we show how R5 and DR are com-

bined leading to a requirement R6 which is the basis for 
specifying FA.

Effectively there are two machines to define and 
then combine.  There is the FA machine that drives a cor-
rectly operating AO Selector, which is defined by R5 
(Table 1), and there is the FA machine that has to safely 
drive a failed AO Selector’, whose behaviour is defined 
by DR. That is, under no-failure conditions the Table 1 
behaviour should be followed. However, when the po-
tentially catastrophic failure is detected, then the FA’s 
behaviour has to be modified in line with DR, and audio 
has to be muted. That is, the behaviour in the presence of 
failure dominates the normal operating behaviour so as 
to ensure safety. 

With the interpretation of the requirements that DR 
has priority over R5, a new statement of the requirement 
for this problem is shown in Table 4, in which the behav-
iour required by DR effectively overrides aspects of the 
behaviour required by R5 in order to ensure safe opera-
tion. 

Table 4. FA Requirement R6, after PSA
Monitor Condition Constraint

CAT = on ∧ id = cat 
CAT = on ∧ id ≠ cat

 Sel = Cat ∧ mute = off
 Sel = null ∧ mute = on
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CAT ≠ on ∧ Sys(1) ∧ id = S1f
CAT ≠ on ∧ Sys(1) ∧ id ≠ S1f

 Sel = S1f ∧ mute = off
 Sel = null ∧ mute = on

CAT ≠ on ∧ Sys(2) ∧ id = S2f
CAT ≠ on ∧ Sys(2) ∧ id ≠ S2f

 Sel = S2f ∧ mute = off
 Sel = null ∧ mute = on

CAT ≠ on ∧ Sys(3) ∧ id = S3f
CAT ≠ on ∧ Sys(3) ∧ id ≠ S3f

 Sel = S3f ∧ mute = off
 Sel = null ∧ mute = on

CAT ≠ on ∧ Sys(0) ∧ id = nul
CAT ≠ on ∧ Sys(0) ∧ id ≠ null

 Sel = null ∧ mute = off
 Sel = null ∧ mute = on

RS: H1 (10-7), H2 (10-5) safety targets must be satisfied

Applying simple logic proofs to Table 4 indicates 
that it does correctly capture the required safer behav-
iour.  Therefore, the given choice of architecture and the 
above statement of R6 form a suitable basis for further 
development. In particular, they can be used to derive a 
specification for FA, (justification J4), leaving problem 
P’Spec (which is P’Reduced, with R6 replacing R5 & RS).

5. Discussion and conclusions
In our view, software engineering includes the iden-

tification and clarification of system requirements, the 
understanding and structuring of the problem world,  the 
structuring and specification of a hardware/software ma-
chine that can ensure satisfaction of the requirements in 
the problem world, and the construction of arguments, 
convincing both to developers, customers, users and 
other stake-holders that the system will provide the func-
tionality and qualities that are needed. 

Software development is,  thus, a complex, iterative 
process made more difficult by the need to relate human 
and physical domains to the formal world of the ma-
chine. In some areas, such as safety-critical systems, 
paramount importance is placed on the quality of the 
software, with this driving the development process for-
wards, and backwards, as needed. An effective approach 
to system development must therefore deal adequately 
with the informal, the formal, and the relationships be-
tween them.

In this paper,  we have illustrated how a problem 
oriented approach to software engineering (POSE) can 
mesh within and support more traditional processes, to 
provide structuring for the development process, and rich 
traceability and auditability during iteration. The analysis 
of Section 4 demonstrates how the artefacts produced 
under POSE can be used to: (a) evolve the system level 
requirements such that they are directly related to a 
software intensive embedded machine; (b) form the basis 
of safety analysis work; and (c) combine the functional 
and derived safety requirements into a coherent, safe 
requirements model that forms a good basis for the re-
mainder of the development.

Moreover, the work of Section 4 illustrates how 
POSE can be used to record the structure of the devel-
opment and of the argument of the adequacy of the pro-

posed solution, including the rationale for important 
design choices (why the simple initial candidate archi-
tecture was not suitable as the basis of the design) prop-
erly situated within the documentation of the develop-
ment. Indeed, under POSE, each step in the requirements 
transformation process can be audited, the rationale for 
making a particular decision validated, and the traceabil-
ity of the process demonstrated. These features are ex-
tremely important in safety critical system applications 
where the case for safety has to be justified, and inde-
pendent auditing is the accepted means of validating this 
justification [21], [8]. This suggests that POSE may be a 
suitable front-end of an integrated safety-critical devel-
opment approach suitable for embedded avionics appli-
cations.

The completed development structure is shown in 
Figure 12, note that J’1 contains a portion of the candi-
date architecture development to justify the change of 
architecture.

P'Reduced

PInitial

P'Red1

P'Interpreted

...

J'1

J2

J4

P'Spec

J30 & J31 & J32  &  J33

Figure 12. The complete POSE development 
structure and associated adequacy argument 

steps for FA

Currently, within the safety-critical development 
industry, there is no systematic procedure for arriving at 
quality requirements, i.e., requirements suitable to begin 
a formalised development process. Because the process 
is currently ad hoc, too many poor requirements get 
through (i.e.,  those that are ambiguous and/or difficult to 
verify and validate).  Being able to provide some consis-
tency and traceability,  as we have shown possible under 
POSE, especially if we can also link to other known suc-
cessful notations will greatly improve matters.
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