

ISSN 1744-1986

T e c h n i c a l R e p o r t N o 2 0 0 6 / 1 1

Relating Safety Requirements and System Design
through Problem Oriented Software Engineering

Derek Mannering
Jon Hall

Lucia Rapanotti

14th September 2006

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

1

Relating Safety Requirements and System Design
through Problem Oriented Software Engineering

Derek Mannering Jon G. Hall Lucia Rapanotti
General Dynamics UK Limited

UK
Centre for Research in Computing

The Open University, UK
derek.mannering@generaldynamics.uk.com {J.G.Hall, L.Rapanotti}@open.ac.uk

Abstract
Standards mandate the demonstration of safety prop-

erties for industrial software, starting at the initial re-
quirements phase. The processes involved are iterative,
with the choice of potential solution architecture being a
driver for the discovery of system failure modes. Manag-
ing the resulting development is a complex task.

Problem Oriented Software Engineering brings to-
gether many non-formal and formal aspects of software
development, providing a structure within which the re-
sults of different development activities can be combined
and reconciled.

This paper illustrates how problem orientation can
support the development task of a safety-critical system
through its ability to elaborate, transform and analyse
the project requirements, reason about the effect of par-
tially detailed candidate architectures, and traceably
audit design rationale through iterative development.
The approach is validated through its application to an
industrial case study.

1. Introduction
Ensuring adequate safety is a crucial factor in the

deployment of many embedded systems, including those
used in avionics applications. This concern has been
captured in safety standards such as the UK Defence
Standard 00-56 [21] and the international IEC 61508 [8].
These standards require hazard identification and pre-
liminary hazard analysis to occur in the early phases of
the development process (e.g. [16]). This is consistent
with studies that have shown that a large proportion of
anomalies occur at the requirements and specification
stages of a system development [4], [11]. Further, the
anomalies of interest are not restricted to just component
or functional failure, but include significant contribu-
tions from factors that are emergent properties of the
interactions of complex systems [11], [18]. A study by
Lutz concluded that safety-related software errors arose
most often from inadequate or misunderstood require-
ments [14]. Other work has highlighted the need to con-

duct a safety analysis of the requirements [3], [5]. These
factors all support the notion that safety must be built
into the design, and that the evolving design representa-
tions analysed to demonstrate that they have the desired
safety properties [13].

The goal of this paper is to demonstrate how the
Problem Oriented Software Engineering (POSE) frame-
work [6] can be used to support directly the process of
formulating a requirements model that can undergo haz-
ard identification and preliminary hazard analysis –
called Preliminary Safety Analysis (PSA) in this paper –
as required by the safety standards (e.g. [21]). The result
is a revised requirements model that is known to be able
to satisfy its identified safety requirements and thus
forms a good basis for the remainder of the development
process. The approach is validated through its applica-
tion to a real avionics system. In this work, PSA consists
of simple logic proofs to demonstrate systematic cor-
rectness [15], Functional Failure Analysis (FFA) [17] to
identify safety hazards and issues, and functional Fault
Tree Analysis (FTA) [23] to resolve them. These tech-
niques are well defined in their respective references and
only the results of applying them are considered in this
text.

The paper is organised as follows: background and
related work are presented in Section 2. The basics of the
POSE framework are described in Section 3. Section 4
demonstrates the use of POSE on a case study involving
the development of requirements and high level architec-
ture for a component of an aircraft warning system. Sec-
tion 5 contains a discussion and conclusions.

2. Background and related work
The work presented in this paper is based on a

multi-level safety analysis process typical of many in-
dustries. For example, commercial airborne systems are
governed by ARP4761 [20]. ARP4761 defines a process
incorporating Aircraft FHA (Functional Hazard Analy-
sis), followed by System FHA, followed by PSSA (Pre-
liminary System Safety Assessment, which analyses the

2

proposed architecture). This paper is concerned with the
latter, PSSA, but uses PSA in place of PSSA.

The view of requirements in this paper follows the
fundamental clarification work of Jackson [24] and Par-
nas [2] which distinguishes between the given domain
properties of the environment and the desired behaviour
covered by the requirements. This work also distin-
guishes between requirements that are presented in terms
of the stakeholder(s) and the specification of the solution
which is formulated in terms of objects manipulated by
software [22]. Therefore there is a large semantic gulf
between the system level requirements and the specifica-
tion of the machine solution. One of the goals of apply-
ing POSE is to bridge this gulf by transforming the sys-
tem level requirements into requirements that apply
more directly to the solution.

The POSE notion of problem used in this work fits
well with the Parnas 4-Variable model, which has been
used by Parnas et al. as part of a table driven approach
[2]. This model and table-based approach is particularly
well suited to defining embedded critical applications.
This is demonstrated by the fact that they form the basis
for the SCR [1], and the RSML methods. The RSML
work led to the SpecTRM [12] methods, which form part
of a human centred, safety-driven process which is sup-
ported by an artefact called an Intent specification [13].
The work in this document covers much of the second
level System Design Principles of the Intent specifica-
tion, and thus is complementary to the third level Black-
box level provided by SpecTRM.

The work of Anderson, de Lemos, and Saeed [3]
share many of the principles and concepts that have
driven the development of this work. Particularly the
notions that safety is a system attribute and the need to
apply a detailed safety analysis to the requirements
specifications. The main advantages of the POSE ap-
proach over that work are: (a) it provides a framework
for transforming requirements; (b) it is rich in traceabil-
ity; and (c) the models it uses are suitable for the safety
analysis. The latter means it is efficient because there is
no need to develop “new” models (with all its attendant
validation problems) just to perform the PSA. Further,
the traceability makes it particularly suited for use with
standards such as DS 00-56 [21] and the DO-178B [19]
software guidelines.

3. Problem Oriented Software Engineering
Problem Oriented Software Engineering (POSE,

[6]) brings together many non-formal and formal aspects
of software development, providing a structure within
which the results of different development activities can
be combined and reconciled. Essentially, the structure is
the structure of the progressive solution of a system de-
velopment problem; it is also the structure of the ade-
quacy argument that must eventually justify the devel-
oped system. POSE does not prescribe any particular
development process; rather it identifies steps of devel-

opment which may be accommodated within the devel-
opment process chosen. Other work has illustrated the
solution of mission-critical development problems under
POSE [7].

In this paper, we show how POSE fits within a
safety-critical development context, such as that defined
by DS 00-56 [21]. The process we support is that of for-
mulating a requirements model for a safety-critical sys-
tem that can undergo hazard identification and prelimi-
nary hazard analysis as required by the safety standards.
This process is complex and iterative in that design
choices affect requirements, and vice versa. For this
complex process, we show how POSE could be used to:
a) provide revised requirements statements together with
a design that is known to satisfy them; and b) provide
rich traceability and record design rationale throughout
the iterative development.

Under POSE, problems requiring solution, i.e., re-
quirements in context, are transformed into other prob-
lems that are easier to solve, or that will lead to yet other
problems that are easier to solve. Problem transforma-
tions capture discrete steps in the solution process. The
following classes of transformation are recognised in the
framework:

Representation: The initial transformation covering
the identification of the major component parts of a
problem: the given domains (problem context), with
their phenomena and behaviours; the machine to be de-
signed and its shared phenomena with the context; the
requirement to be satisfied by the machine in its context.

Interpretation: As analysis proceeds, knowledge of
the real-world and designed artefacts increases and this
will be captured by changes in the respective domain and
requirement descriptions. Example of the use of interpre-
tation include: capturing further detail of a domain’s de-
scription; and using experience and engineering knowl-
edge to select a solution architecture. Requirements may
also be interpreted when, for instance, better understand-
ing is reached of a customer’s requirements, or in order
to separate and address standard concerns, such as safety
or security.

Reduction: This allows one to simplify a problem by
removing domains from the context, simultaneously
changing the requirement to preserve the solution. It is
an essential transformation in the framing of sub-
problems and the derivation of specification statements
from requirement statements.

Solution: This provides justification that a solution
description is adequate in solving, that is, in its context,
it satisfies the problem’s requirement.

Each defined problem transformation transforms
problems in a way that respects solution adequacy. What
this means is given by their general form:

For problems P, P1,…,Pn, with solutions S, S1,…,
Sn, respectively, that a problem transformation
transforms problem P to the problems Pi, i =1,..., n,
with justification J, means that under the transfor-
mation, S is a solution of P with adequacy argument

3

(A1 & A2 & ... & An) & J whenever S1,..., Sn are
solutions of P1,..., Pn, with adequacy arguments
A1,..., An, respectively.

The justification J for the transformation will not, in
general, be formal and so the transformations of the
framework need not be sound in any formal sense: the
informality of the subject matter precludes fully formal
treatment of some transformations. Illustrations of the
forms of justification we admit are given later in the pa-
per, however, as an example, one justification we use is
that of an engineer deeming an extant component to be
appropriate as part of the solution; the ramifications of
this being incorrect are discussed in Section 4.

Problems are transformed from more complex to
less complex and, in general, it cannot be known during
transformation application whether a future solution will
satisfies a requirement until that solution is actually
built. All the transformation says is that, if solutions to
the simpler problems can be found then so can a solution
to the more complex problem. During development,
then, often the best we can do is to ensure that future
design choices, such as that of a high-level architecture,
do not make it impossible to satisfy the requirements,
and that this be recorded in the justification. As a simple
example of what we mean, consider that one should not
choose a processor that is known to be very unreliable as
the basis of a safety-critical system as such a processor is
unlikely to meet safety-critical requirements; the best
that can be done is to choose an ultra-reliable processor
noting, however, that even this choice does not guarantee
that the requirements will be met, as there are many
other factors that could impact the satisfaction of the
safety requirements.

For definiteness and precision, the original POSE
framework [6] is presented as a Gentzen-style sequent
calculus [10]. In this paper, as in others, we use the
graphical notation of the closely related Problem Frames
approach (PF, [9]) for illustration.

Both POSE and PF regard a problem as require-
ments in a real-world context. A context is a set of (pos-
sibly) interacting domains described in terms of their
indicative properties; each domain description captures a
part of the real-world which is of interest in the problem;
a requirement is a statement – written in the optative
mood – of what should be true (or what should turn out
to be true) of the context given an operating solution to
the problem. A solution is simply the description of a
domain, representing a machine whose behaviour is con-
strained by a developed program, that solves the prob-
lem. Thus, a software problem challenges us to find the
solution that, in the given context, brings about the re-
quirement.

A thorough treatment of PF is beyond the scope of
this paper, but can be found in [9]. Here we give a short
overview of problem diagrams - the notation used by PF
to represent problems - through the example in Figure 1.
The problem is to specify a solution machine called FAS
(represented as a double-barred box), which interacts

with real-world domains Speaker, Catastrophic System,
System 1, etc. (represented as boxes) in such a way that
the requirement R (represented as a dotted oval) is satis-
fied. Links between solution machine and real-world
domains capture relevant shared phenomena (e.g., enti-
ties, values, events, commands or operations). For in-
stance, in Figure 1, FAS shares phenomenon `message’
with Speaker; that such a phenomenon is controlled by
FAS is indicated by the ‘!’. The requirement is linked to
domains whose properties and phenomena are referred to
or constrained by the requirement. For instance, the dot-
ted line between R and Catastrophic System indicates
that R refers to phenomenon cat, while the dotted arrow
between R and Pilot indicates that R constrains phe-
nomenon audio. Appropriate descriptions of its solution,
domains, requirement and phenomena are associated
with a problem diagram in the course of analysis, as we
will see in the case study of the next section.

4. Case study
The case study concerns the design of a Failure An-

nunciation System (FAS) that is part of a military air-
craft. The FAS is a component of an actual operational
System Failure Warning System (SFWS) flying today.
The SFWS contains a number of other communication
functions but these do not impact the function being con-
sidered, and hence have been omitted from the study for
reasons of brevity. In this sense, the case study is simpli-
fied but much of the interesting complexity of the system
remains.

Here we have fitted POSE within a traditional
safety-critical system development process, that of DS
00-56 [21]. The case study assumes that an aircraft level
safety analysis has been completed and that this has allo-
cated safety requirements to the main aircraft systems, of
which the SFWS is one. It also assumes that a system
safety analysis of the SFWS has been completed and that
this has allocated requirements to its sub-systems, in-
cluding the FAS. In this way the safety requirements for
the FAS (H1 & H2, see Section 4.1) are defined and allo-
cated to it. Below we give a POSE characterisation of
the problem and transform it, using POSE, to a design
suitable for carrying out a PSA. As the PSA highlights
problems with the design, we then show how to rethink
design, with POSE providing backtracking and traceabil-
ity.

4.1 Overview of the system
In a real aircraft, the SFWS monitors a number of

the aircraft’s sub-systems, warning the pilot if one of the
monitored systems has failed. The SFWS comprises three
diverse warning systems: (a) the Failure Annunciation
System (FAS) which provides audio warnings through a
speaker; (b) a visual warning system that drives a dedi-
cated warning display panel in the cockpit; and (c) a vis-
ual warning system that sends warning messages to the
pilot’s main display.

4

Typically, the monitored systems include: inertial
navigation; GPS navigation; aircraft data; environment
data; and health monitoring. Failure of these systems
will, typically, not prove insurmountable by the pilot. In
contrast, a failure in the Catastrophic System (part of the
flight control system) could result in the loss of the air-
craft and/or pilot.

The SFWS safety requirement allocated by the air-
craft level system safety analysis identifies the following
SFWS failures as hazards to be considered:

H1: Inadvertent indication of the Catastrophic
message.

H2: Failure to indicate the Catastrophic message.
These two hazards do not have the same nature:

hazard H1 is particularly problematic because of the ac-
tion the pilot has to take if the Cat fail message is
played. The inadvertent indication of Cat fail is regarded
as an event to be avoided. As a result, it is classified as
safety critical, and assigned a target failure probability of
10-7 fpfh (failures per flight hour).

In contrast, hazard H2, the failure of one of the
SFWS systems to indicate a Catastrophic System failure,
is mitigated by the remaining two SFWS systems, which
are intentionally diverse in operation. Hence H2 is clas-
sified only as safety related, and assigned a target failure
probability of 10-5 fpfh.

In the following, we focus on the development of
the FAS. In particular, we show how POSE applies to
formulate the specification of the embedded computer
control system that controls the selection and generation
of audio warning messages. Moreover, we demonstrate
how POSE assists in the development of an architectural
model that is capable of satisfying its H1 and H2 safety
requirements.

A first representation of the FAS problem is given by
problem PInitial in Figure 1, expressed as a problem dia-
gram. In the figure, the FAS can be seen to monitor di-
rectly the status of the Catastrophic System using a dis-
crete input (cat). It also monitors the status of other three
systems, Systems 1, 2 and 3, representing the various
sub-systems of the aircraft, by interrogating their health
status messages (sys1, sys2 and sys3, respectively). The
FAS issues warning audio messages to the pilot via a
speaker.

Figure 1 The FAS problem
(problem PInitial)

The functional aspects of the requirement R for the
FAS are:

Ra: When health monitoring indicates that a
monitored system has failed, the system
should play the correct audio message to
pilot.

Rb: The message levels should be comfortably
heard by the pilot.

Rc: If more than one system has failed, then
messages should be selected for play in the
order: Cat fail, Sys1 fail, Sys2 fail and Sys3
fail.

Rd: If no system failures are detected, then no
message should be played.

As well as Ra, Rb, Rc and Rd, FAS should also sat-
isfy the safety targets set by the aircraft system level
safety analysis. Recognising this we add safety require-
ment RS to R:

RS: For hazards H1 and H2, their respective
safety targets (10-7fpfh and 10-5fpfh) must be
satisfied.

The overall requirement R is Ra & Rb & Rc & Rd
& RS is indicated in the dotted ellipse in Figure 1. A
complete statement of R should also include require-
ments that cover space, weight, interfaces, maintenance
and so on, but these are beyond the scope of this work.

4.2 A FAS candidate architecture
Safety-critical developments are subject to many of

the same constraints as other developments, with system
cost being an important consideration. Because of this,
we will make use of off-the-shelf components for Failure
Detection (the FD component), for Audio Output Selec-
tion (the AO Selector component) and for Audio Output
Decoding (the AO Decoding component), combining
them together with a (still to be designed) Failure An-
nunciator Controller (FA).

The FD is shown in Figure 2. It receives health
status information about Systems 1, 2 and 3, which it
decodes and sends to the FA via its Status signal. In addi-
tion, it monitors the Catastrophic System’s discrete input
cat which it also sends to the FA via its Status signal. The
Control Decoder prioritises the failure data to send to the
FA.

TX
Store

Message
Tx/Rx

Control
Decoder

Message
Buffer

CS!{cat}

S1!{sys1}

S2!{sys2}

S3!{sys3}

FD!{Status}

Figure 2 The Failure Detection component FD
The combination of the AO Selector and AO De-

coder is shown in Figure 3. Their combined role is to
output the audio signal of the message selected by the

5

FA. The AO Selector is an FPGA-based device, contain-
ing a library of digital audio messages stored in PROM.
The AO Decoder decodes the selected digital message
and turns it into an audio wave for the speaker.

Selector Memory

Decoder

Message

FA!{Sel}

Amplifier
Volume
Limiter

AOD!{message}

AO Selector

AO Decoder

AOS!{dMessage}

Figure 3 The Audio Output components

FA!{Sel}

FDFA

AO Selector

AO Decoder

AOS!{dMessage} AOD!{message}

FD!{Status}

CS!{cat}

S1!{sys1}

S2!{sys2}

S3!{sys3}

Figure 4 The candidate architecture for FAS

Comprising four components, a candidate architec-
ture for FAS is shown in Figure 4 and, given the initial
representation of the problem PInitial, we may introduce
this candidate architecture (using the POSE transforma-
tion Solution Interpretation) the result being problem
PInterpreted shown in Figure 5.

Figure 5 Solution Interpretation of FAS
(problem PInterpreted)

From the figure, we see that the to be designed
component FA should take in the failure status informa-
tion from the FD, process it, then send out the appropri-
ate audio message request to the AO Selector. If no fail-
ures are reported by the FD, then the FA sends no mes-

sage request to the AO Selector, otherwise the FA sends
out the highest priority message request.

The justification J1 that this step is adequate is sim-
ply engineering judgement: that the candidate architec-
ture is a suitable starting point for the design. (Both
problem and justifications are named so that we can eas-
ily refer to them later.)

4.3 Simplifying the problem
With the introduction of the candidate architecture, a

PSA is required to see whether the architecture can
safely be the basis of the FAS. However, the problem has
become quite complex, and we want to simplify it as
much as possible to remove any factors that will unnec-
essarily complicate the PSA.

Under POSE, problem simplification is achieved
through Problem Reduction which allows domains to be
removed from the context whilst simultaneously rewrit-
ing the requirement to compensate for their removal. For
reasons of brevity, only an outline of the transformation
can be given here; a thorough presentation can be found
in [6], [7].

Generally, domains furthest from the machine are
removed first: in this case the first domain to be removed
will be the Pilot. This reduction consists of two trans-
formation steps. Firstly, the requirements relating to the
Pilot are transformed to relate to the Speaker domain.
For example, Ra contains the term “Play the correct
audio message to the pilot”. Under the transformation,
this will be rephrased to refer to the Speaker by making
(and justifying) transformations from Pilot-oriented phe-
nomena into Speaker-oriented phenomena; similarly for
Rb (see below). Secondly, to complete the domain re-
moval of the Pilot, we record assumptions that need to
be in place for consistency. In this case, this will include
the assumption that the Pilot can actually hear the mes-
sage as it issues from the Speaker. That we rely on this
assumption holding is the justification J2 for this reduc-
tion. Transforming R in this way yields a new require-
ment statement, that we will call R1, in which Ra be-
comes R1a and Rb becomes R1b (shown below). Rc and
Rd are not changed by the transformation (they do not
mention Pilot phenomena) and become R1c and R1d
unchanged, respectively. RS remains unchanged too. The
resulting problem, with requirement R1 = R1a & R1b &
R1c & R1d & RS, is shown in Figure 6.

The revised R1a and R1b are:
R1a: When health monitoring indicates that a

monitored system has failed, play the correct
audio message through the Speaker.

R1b: The message levels should be at 60dB above
the ambient cockpit level.

6

Figure 6 Pilot domain removal
(problem PRed1)

There are a number of domain removals that follow,
which, for brevity, we do not illustrate with figures. The
next domain removed is the Speaker. As before this in-
volves two steps. In this case R1 is transformed into R2,
and further assumptions are added to cover the removal
of the Speaker domain. This time R1a and R1b that refer
to the Speaker have to be re-phrased in terms of the AO
Decoder audio output stream that drives the Speaker, to
become R2a and R2b:

R2a: When health monitoring indicates that a
monitored system has failed, the AO De-
coder should generates a sequence of audio
signals that corresponds to the correct sys-
tem fail message.

R2b: The audio sequence amplitude levels are
within the defined range.

As before R1c becomes R2c, and R1d becomes R2d
without change, and RS is unchanged too. The domain
removal assumption is that the audio output stream pro-
vided by the AO Decoder correctly drives the Speaker
within the specified comfortable audio range, to produce
the desired warning message (justification J30).

There is still a wide gulf between the phenomena
that FA understands (to do with message selection) and
the requirement R2a, which talks about audio sequences.
Further reduction is required.

Our next goal is to remove the AO Decoder domain.
To do so, we need to consider that it consists of a volume
limiter, an amplifier and the digital to analogue decoding
block (Decoder), as shown in Figure 3.

Removing the Volume Limiter does not affect R2a,
R2c or R2d, these becoming R3a, R3c and R3d directly.
However, it requires R2b to be modified to remove the
upper limit. The latter becomes one of the assumptions
of the domain removal, i.e., removing Volume Limiter
adds the assumption that the analogue drive to the
Speaker will be limited to be within a maximum sound
output, with the result that the audio will not be uncom-
fortably loud (justification J31).

R3b: The audio sequence amplitude levels are
within comfortable levels.

Removing Amplifier does not affect R3a, R3c or
R3d which become R4a, R4c and R4d, respectively.
However, R3b is, effectively, removed, becoming an
assumption that there will be a defined audio signal gain
from input to output, i.e., the audio will be loud enough
to be comfortably heard, (justification J32). Other as-

sumptions concerned with signal quality (e.g., distortion
removal) might also be added at this point.

Removing Decoder does not affect the requirement
R4c, which becomes R5c. However, the Decoder block
transfers byte streams into analogue audio signals; there-
fore the requirements R4a and R4d and the transfer func-
tion through Decoder are key elements of the transfor-
mation. The removal of Decoder requires R4a to become
R5a and R4d to become R5d as follows:

R5a: When health monitoring indicates that a
monitored system has failed, then AO
Selector should generate a sequence of bytes
that corresponds to the selected system fail
message.

R5d: If no system failure is detected then the AO
Selector block should generate no message.

The assumption is that this sequence of bytes, when
appropriately decoded, will produce the desired audio
signal, i.e., the correctness of the domain transfer func-
tion for Decoder becomes an assumption that is added to
the requirements when the Decoder domain is removed
(justification J33).

The requirement R5 is R5a & R5c & R5d & RS
together with the set of assumptions associated with the
domains removal. At this point, R5 talks about “selected
system fail message” which corresponds directly to the
phenomena shared between FA and AO Selector. Also,
inspection of the FD phenomena and their comparison
with the R5 monitoring terminology indicates that they
are equivalent. That is, R5 talks about “when health
monitoring indicates that that monitored system has
failed” and this corresponds directly to the Cat and mes-
sage status data that is sent via Status. Hence, removing
Catastrophic System, and Systems 1, 2 and 3 leaves R5
unchanged, with the resulting problem, PReduced, being
that shown in Figure 7. (This rationale becomes J34, the
justification for the removal of the monitored systems:
there is no need to rewrite R5.)

Figure 7 The reduced FA problem
(problem PReduced)

4.5 Formalising the requirements
It is a simple step to formalise the requirements for

input to the PSA. The corresponding POSE transforma-
tion is Requirements Interpretation which, with adequate
justification, allows a requirement to be rewritten in an
equivalent form. The non-safety aspects of the require-
ment can be formalised into Parnas Table-like form, with
the resulting requirement shown in Table 1.

7

Table 1 Formalised R5, prior to PSA
Monitor Condition Constraint

CAT = on Sel = Cat fail

CAT ≠ on ∧ Sys1fail Sel = Sys1 fail

CAT ≠ on ∧ Sys2fail Sel = Sys2 fail

CAT ≠ on ∧ Sys3fail Sel = Sys3 fail

CAT ≠ on ∧ Sys4fail Sel = null

RS: H1 (10-7), H2 (10-5) safety targets must be satisfied

4.6 Preliminary Safety Analysis
The solution preserving nature of problem transfor-

mation under POSE leaves us at a point at which the
solution of the reduced FA problem will also be a solu-
tion of the initial problem. Note that this does not mean
that there is, necessarily, a solution to the reduced FA
problem. In fact it turns out from a PSA that the chosen
candidate architecture is not a suitable basis for a solu-
tion, and it will have to be reworked: the process is nec-
essarily iterative.

In general, the goal of a PSA is to: (a) confirm any
relevant hazards from the system level hazard list; (b)
identify if further hazards need to be added to the list;
and (c) then analyse an architecture to validate that it can
satisfy the safety targets associated with the identified
relevant hazards. In this case, within the POSE, the PSA
goal is also to determine whether a solution to the re-
duced FA problem exists. A number of techniques can be
applied to perform a PSA. This work uses a combination
of mathematical proof, Functional Failure Analysis
(FFA) [17] and functional Fault Tree Analysis (FTA)
[23].

The POSE framework structuring and the phased
development means that relatively simple formal re-
quirements (as in Table 1) can be developed that apply
directly to the solution machine. Simple logic proofs
demonstrate that R5 (Table 1) has the required functional
properties. Therefore, the remaining feasibility check at
this level is to demonstrate that the hardware reliability
of the design blocks, i.e., those of Figures 2 and 3, can
satisfy the safety requirement RS.

The FFA can be used to identify any additional rele-
vant hazards or, more likely, it will identify credible fail-
ure modes that result in an existing hazard. The FFA
should be applied to each architectural component in
turn. Functional FTA can then be used to analyse if the
events identified by the FFA satisfy the targets contained
in RS.

There is insufficient space to present the full PSA,
hence we summarise only the main elements of the AO
Selector analysis to demonstrate the process followed.
The significant results from applying FFA to the AO
Selector are shown in Table 2.

Table 2 AO Selector FFA Results

Id Failure Mode Haz

F1 Plays no messages – no Cat fail when re-
quired.

H2

F2 Plays Cat fail message too late. H2

F3 Plays wrong message – inadvertent Cat fail. H1

F4 Plays wrong message – no Cat fail when
required.

H2

F5 Plays too loud – Pilot switches system off. H2

F6 Plays too softly – Cat fail not heard. H2

FTA, applied to the AO Selector architecture (refer
back to Figure 3), with F1 to F6 as the top events, is used
to establish if the architecture can satisfy its targets. F3 is
dominated by the known failure rate of the FPGA that
would implement the AO Selector functionality. This
indicates that the failure rate for F3 is 3x10-7 fpfh which,
therefore, does not satisfy the target for H1. The result is
that the FPGA AO Selector component will need to be
rethought in order to meet all safety requirements.

The POSE development so far is captured in Figure
8 as a tree (without branching). The tree is notable in
that, from the PSA, PReduced has no solution, and so there
is no further development to be done. Therefore, we
must backtrack the development to the point at which the
architecture was introduced, and continue afresh. How
this is done is shown next.

J30 & J31 & J32 & J33

PReduced

PInitial

PRed1

PInterpreted

...

J1

J2

Figure 8. The development prior to the PSA
4.7 Rethinking the architecture

To address its shortcoming, a modified FPGA AO
Selector component is developed to: (a) include sending
back the message identifier of the currently playing mes-
sage to the FA in a status message; and (b) add a mute
input to the FA control that allows the FA to mute audio
output if the message identifier does not tally with the
required message to be played. (Although the design of
the modified AO Selector component could be done
within POSE, for reasons of brevity, we have not done
this.)

A derived requirement DR is also introduced to the
effect that, if the message identifier is not the same as the
currently playing message, then audio must be inhibited,
audio otherwise being allowed.

8

Selector Memory

Message

FA!{Sel}

Mute
FA!{Mute}

Id
AOS!{id}

AOS!{dMessage}

Figure 9. Modified AO Selector
The changes to the AO Selector are shown in Figure

9. The POSE development must also backtrack to allow
the reintroduction of the new architecture. To do this the
tree of Figure 8 is pruned back to the node labelled PInitial
at which point the new architecture is introduced result-
ing in Figure 10.

AOS!{dMessage}

Catastrophic
System

System 1

Pilot

FD

CS!{cat}

R

{cat}

System 2

System 3

Speaker

S1!{sys1}

S2!{sys2}

S3!{sys3}

{sys1}

{sys2}

{sys3}

{audio}

FA

AO Selector'

AO Decoder
S!{audio}

AOD!{message}

FD!{Status}

FA!{Sel,Mute} AOS!{id}

Figure 10. Introducing the second candidate
architecture for AO Selector’

(problem P’Interpreted)
The justification (J’1) for the introduction of the new

architecture is notable in that it should justify the choice
of the new architecture over the old. One way to do this
is to include the pruned part of the tree in the justifica-
tion, adding a note to the effect that this was the reason
for the choice of new architecture.

Note that DR also introduces additional failure
modes. For example, mute failing on is a form of F6 (see
Table 2). It should also be noted that F2 can be consid-
ered to be a form of F1 in the limit. Table 3 shows the
results of repeating the FFA, collating results and then
performing the FTA with the new architecture. The Tar-
get – shown in brackets after the FTA calculation result –
is the most severe probability applicable (e.g., the H1
target, 10-7 fpfh, used for first two terms).

Table 3. Collated PSA results for AO

Collated Failure Mode FTA Haz.

Wrong message played, correct id 10-12 (10-7) H1&H2

Wrong messaged played, expected
id

 10-13 (10-7) H1&H2

Correct message, wrong or no id. 10-7 (10-5) H2

No message played: mute fails/too
soft

 10-6 (10-5) H2

Message played too loud 10-6 (10-5) H2

The worst effect of “Message played too loud” is
considered to be that the pilot switches the FAS off to
avoid the distraction – this equates to hazard H2, so the
H2 target is used. Mitigation for this failure mode is pro-
vided by the Volume Limiter circuitry which is part of the
AO Decoder (see Figure 3). Inspection of the analysis
results in Table 3 indicates that the modified AO
Selector’ architecture is adequate for this aspect of the
safety targets, and therefore it is valid to use it to con-
tinue with the development.

A similar analysis is applied to the FD domain and
satisfactory results are obtained. Therefore, the modified
FAS architecture can be argued not to prevent satisfaction
of both the functional and safety target (RS) require-
ments, and hence is a suitable basis for the remainder of
the development process, that is, designing FA.

The problem development forward from this point is
similar to that previously: problem reduction is applied
to arrive at the reduced FA problem of Figure 11.

Figure 11. New reduced FA problem
(problem P’Reduced)

4.8 Towards a specification for FA
In this section we show how R5 and DR are com-

bined leading to a requirement R6 which is the basis for
specifying FA.

Effectively there are two machines to define and
then combine. There is the FA machine that drives a cor-
rectly operating AO Selector, which is defined by R5
(Table 1), and there is the FA machine that has to safely
drive a failed AO Selector’, whose behaviour is defined
by DR. That is, under no-failure conditions the Table 1
behaviour should be followed. However, when the po-
tentially catastrophic failure is detected, then the FA’s
behaviour has to be modified in line with DR, and audio
has to be muted. That is, the behaviour in the presence of
failure dominates the normal operating behaviour so as
to ensure safety.

With the interpretation of the requirements that DR
has priority over R5, a new statement of the requirement
for this problem is shown in Table 4, in which the behav-
iour required by DR effectively overrides aspects of the
behaviour required by R5 in order to ensure safe opera-
tion.

Table 4. FA Requirement R6, after PSA
Monitor Condition Constraint

CAT = on ∧ id = cat
CAT = on ∧ id ≠ cat

 Sel = Cat ∧ mute = off
 Sel = null ∧ mute = on

9

CAT ≠ on ∧ Sys(1) ∧ id = S1f
CAT ≠ on ∧ Sys(1) ∧ id ≠ S1f

 Sel = S1f ∧ mute = off
 Sel = null ∧ mute = on

CAT ≠ on ∧ Sys(2) ∧ id = S2f
CAT ≠ on ∧ Sys(2) ∧ id ≠ S2f

 Sel = S2f ∧ mute = off
 Sel = null ∧ mute = on

CAT ≠ on ∧ Sys(3) ∧ id = S3f
CAT ≠ on ∧ Sys(3) ∧ id ≠ S3f

 Sel = S3f ∧ mute = off
 Sel = null ∧ mute = on

CAT ≠ on ∧ Sys(0) ∧ id = nul
CAT ≠ on ∧ Sys(0) ∧ id ≠ null

 Sel = null ∧ mute = off
 Sel = null ∧ mute = on

RS: H1 (10-7), H2 (10-5) safety targets must be satisfied

Applying simple logic proofs to Table 4 indicates
that it does correctly capture the required safer behav-
iour. Therefore, the given choice of architecture and the
above statement of R6 form a suitable basis for further
development. In particular, they can be used to derive a
specification for FA, (justification J4), leaving problem
P’Spec (which is P’Reduced, with R6 replacing R5 & RS).

5. Discussion and conclusions
In our view, software engineering includes the iden-

tification and clarification of system requirements, the
understanding and structuring of the problem world, the
structuring and specification of a hardware/software ma-
chine that can ensure satisfaction of the requirements in
the problem world, and the construction of arguments,
convincing both to developers, customers, users and
other stake-holders that the system will provide the func-
tionality and qualities that are needed.

Software development is, thus, a complex, iterative
process made more difficult by the need to relate human
and physical domains to the formal world of the ma-
chine. In some areas, such as safety-critical systems,
paramount importance is placed on the quality of the
software, with this driving the development process for-
wards, and backwards, as needed. An effective approach
to system development must therefore deal adequately
with the informal, the formal, and the relationships be-
tween them.

In this paper, we have illustrated how a problem
oriented approach to software engineering (POSE) can
mesh within and support more traditional processes, to
provide structuring for the development process, and rich
traceability and auditability during iteration. The analysis
of Section 4 demonstrates how the artefacts produced
under POSE can be used to: (a) evolve the system level
requirements such that they are directly related to a
software intensive embedded machine; (b) form the basis
of safety analysis work; and (c) combine the functional
and derived safety requirements into a coherent, safe
requirements model that forms a good basis for the re-
mainder of the development.

Moreover, the work of Section 4 illustrates how
POSE can be used to record the structure of the devel-
opment and of the argument of the adequacy of the pro-

posed solution, including the rationale for important
design choices (why the simple initial candidate archi-
tecture was not suitable as the basis of the design) prop-
erly situated within the documentation of the develop-
ment. Indeed, under POSE, each step in the requirements
transformation process can be audited, the rationale for
making a particular decision validated, and the traceabil-
ity of the process demonstrated. These features are ex-
tremely important in safety critical system applications
where the case for safety has to be justified, and inde-
pendent auditing is the accepted means of validating this
justification [21], [8]. This suggests that POSE may be a
suitable front-end of an integrated safety-critical devel-
opment approach suitable for embedded avionics appli-
cations.

The completed development structure is shown in
Figure 12, note that J’1 contains a portion of the candi-
date architecture development to justify the change of
architecture.

P'Reduced

PInitial

P'Red1

P'Interpreted

...

J'1

J2

J4

P'Spec

J30 & J31 & J32 & J33

Figure 12. The complete POSE development
structure and associated adequacy argument

steps for FA

Currently, within the safety-critical development
industry, there is no systematic procedure for arriving at
quality requirements, i.e., requirements suitable to begin
a formalised development process. Because the process
is currently ad hoc, too many poor requirements get
through (i.e., those that are ambiguous and/or difficult to
verify and validate). Being able to provide some consis-
tency and traceability, as we have shown possible under
POSE, especially if we can also link to other known suc-
cessful notations will greatly improve matters.

6. Acknowledgements
We are pleased to acknowledge the financial support

of IBM, under the Eclipse Innovation Grants, and the
EPSRC, Grant number EP/C007719/1. Thanks also go to
our colleagues in the Centre for Research in Computing
at The Open University, particularly Michael Jackson
and Bashar Nuseibeh.

10

7. References
[1] R. Bharadwaj and C. Heitmeyer, "Developing high

assurance avionics systems with the SCR requirements
method," 19th Digital Avionics Systems Conferences, 2000.

[2] P.-J. Courtois and D. L. Parnas, "Documentation for
Safety Critical Software," 15th International Conference on
Software Engineering, Baltimore, USA, 1997.

[3] R. de Lemos, A. Saeed and T. Anderson, "On the Inte-
gration of Requirements Analysis and Safety Analysis for
Safety-Critical Systems," University of Newcastle upon Tyne,
UK http://citeseer.ist.psu.edu/536230.html, 1998.

[4] A. Ellis, "Achieving Safety in Complex Control Sys-
tems," Safety Critical Systems Symposium, Brighton, United
Kingdom, 1995.

[5] A. Gerstinger, G. Schedl and W. Winkelbauer, "Safety
versus Reliability: Different or Equal," 20th International Sys-
tem Safety Conference, Denver, Colorado, USA, 2002.

[6] J. G. Hall and L. Rapanotti, "A framework for software
problem analysis," Open University TR2006/10, 2006.

[7] L. Rapanotti, J. G. Hall and M. Jackson, "Problem
transformations in solving the Package Router control prob-
lem," Open University, TR2006/07, 2006.

[8] IEC, "61508 Functional safety of electrical/electronic/
programmable electronic safety-related systems," International
Electrotechnical Commission.

[9] M. A. Jackson, Problem frames : analysing and struc-
turing software development problems. Harlow: Addison-
Wesley, 2001.

[10] S. C. Kleene, Introduction to Metamathematics: Van
Nostrand, Princeton, NJ., 1964.

[11] N. Leveson, Safeware: system safety and computers.
Addison-Wesley, 1995.

[12] N. G. Leveson, "Completeness in formal specification
language design for process-control systems," Proceedings of
the third workshop on Formal methods in software practice
ACM Press, 2000.

[13] N. G. Leveson, "Intent Specifications: An Approach to
Building Human-Centered Specifications.," IEEE Transactions
on Software Engineering, vol. 26, pp. 15-35, 2000.

[14] R. R. Lutz, "Analysing Software Requirements Errors
in Safety-Critical Embedded Systems," IEEE International
Symposium Requirements Engineering, 1993.

[15] Z. Manna and R. Waldinger, The Logical Basis for
Computer Programming: Addison Wesley, 1985.

[16] P. A. Martino and C. Muniak, "The Role of System
Safety Engineering in Product Safety," 20th International Sys-
tem Safety Conference, USA, 2002.

[17] J. McDermid and T. Kelly, "Safety and Hazard Analy-
sis Course," in High Integrity Systems Group, Department of
Computer Science: York, 1999.

[18] E. N. Overton, "System Safety Analysis of Safety
Critical Software and the Human User," 19th International
System Safety Conference, Huntsville, Alabama, USA, 2001.

[19] RTCA/DO-178B, "Software Considerations in Air-
borne Systems and Equipment Certification," December 1
1992.

[20] SAE, "ARP4761: Guidelines and Methods for Con-
ducting the Safety Assessment Process on Civil Airborne Sys-
tems and Equipment," December 1996.

[21] UK-MoD, "Safety Management Requirements for De-
fence Systems Part 1 Requirements," MoD, Interim Defence
Standard 00-56 Issue 3, 17 December 2004.

[22] A. van Lamsweerde, "Requirements Engineering in the
Year 00: A Research Perspective," ICSE'00, 22nd International
Conference on Software Engineering, Limerick, 2000.

[23] W. Vesely, F. Goldberg, N. Roberts and D. Haasl, Fault
Tree Handbook, vol. NUREG-0492: U.S. Nuclear Regulatory
Commission, 1981.

[24] P. Zave and M. Jackson, "Four Dark Corners of Re-
quirements Engineering," ACM Transactions on Software En-
gineering and Methodology, vol. 6(1), pp. 1-30, 1997.

http://citeseer.ist.psu.edu/536230.html
http://citeseer.ist.psu.edu/536230.html

