
 
 
 
 
 
 
 

 
 
 

T e c h n i c a l  R e p o r t  N o  2 0 0 7 / 1 5  
 

 
 

Assurance-driven development in  
Problem Oriented Engineering 

 
 

Jon G. Hall 
Lucia Rapanotti 

 
 
 

 
 
 
 
 
 

 
10th December 2007 

 

 
Department of Computing  
Faculty of Mathematics and Computing 
The Open University  
Walton Hall,  
Milton Keynes  
MK7 6AA  
United Kingdom 
 
http://computing.open.ac.uk 

ISSN 1744-1986 



Assurance-driven development in Problem Oriented Engineering

Jon G. Hall Lucia Rapanotti
Centre for Research in Computing

The Open University, UK
{J.G.Hall,L.Rapanotti}@open.ac.uk

Abstract

Problem Oriented Engineering (POE) is a Gentzen-style
‘natural’ framework for engineering design. As such, POE
supports rather than guides its user as to the particular se-
quence of design steps that will be used; the sequencing
is user determined as that most appropriate to the context
of application. In this paper, however, we suggest a se-
quencing of steps and interactions with stake-holders that
is suitable for assurance-driven development, i.e., for de-
velopments in which the argument of fitness-for-purpose is
produced during design.

1 Introduction

By engineering design (shortly, design), we refer to the
creative, iterative and often open-ended process of con-
ceiving and developing products, systems and processes
(adapted from [EDD]).

Engineering design processes by necessity include the
identification and clarification of requirements, the under-
standing and structuring of the context into which the engi-
neered system will be deployed, the specification of a de-
sign for a solution that can ensure satisfaction of the re-
quirements in context, and the construction of arguments,
convincing for all validating stake-holders, that the engi-
neered system will provide the functionality and qualities
that are needed. The involvement of stake-holders moti-
vates the development of an explicit assurance case to col-
lects evidence of the designed artefact’s fitness for purpose.
Traditionally, assurance cases have been compiled after the
fact: the artefact being designed and then evidence of its
fitness-for-purpose collected. The distancing of the artefact
and the argument requires higher levels of design expertise
and can be more costly as errors are found only late in the
process, and has led to calls for evidence is gathered during
development, even acting as a driver for the design, what
we have termed assurance driven design.

In previous work [HMR07, MHR07b, MHR07a,
MHR07c], we have shown how the Problem Oriented Engi-
neering (POE) framework, instantiated as Problem Oriented
Software Engineering (POSE) [HRJ08], can be used in this
role, and describe in [HMR07] how a ‘POSE safety process
pattern’ can be defined through which assurance-driven de-
sign can proceed.

In this paper, we generalise many of the characteristics of
that process pattern from its POSE inception to engineering
design under POE. As well as allowing assurance-driven de-
sign, the generalised POE process pattern has the following
additional characteristics:

• it supports each of the engineering design process ele-
ments described above;

• it provides a vehicle for the assurance case driven de-
sign, with documentation and analysis of the rationale
for decisions;

• it allows for the explicit consideration of the risks in-
volved in design;

• it allows rich traceability between requirements, do-
main assumptions and system components;

• it is parametrisable for use in diverse engineering do-
mains.

The paper is structured as follow. Section 2 provides
a brief introduction to POE. Section 3 introduces the POE
process pattern. Section 4 presents the case study. Section 5
reflects on what has been achieved in the paper.

2 Problem Oriented Engineering

A full presentation of the POE framework is beyond the
scope of this paper but can be found, instantiated for soft-
ware design, in [HRJ08]. POE is a formal system for work-
ing with non-formal and formal descriptions.

Problem Oriented Engineering (POE) is a Gentzen-style
natural framework for engineering design (see, for instance,

1



[Pel99]). As such, POE supports rather than guides its user
as to the particular sequence of design steps that will be
used; the user choosing the sequence of steps that they deem
most appropriate to the context of application. The basis of
POE is the problem sequent for representing design prob-
lems requiring designed solutions. The transformations de-
fined in POE transform problems as sequents into others in
ways that preserve solutions (in a sense that will become
clear). When we have managed to transform a problem to
axioms1 we have solved the problem, and we will have a
designed solution for our efforts.

POE is designed to work with problems not propositions
as in the original natural deduction: the characteristic that
distinguishes it most from natural deduction is the guard-
ing of transformations by justification obligations, the dis-
charge of which establishes the ‘soundness’ of the appli-
cation with respect to stake-holders. Natural deduction is
based on a single absolute notion of correctness provided
by proof whereas, through justifications, POE caters for the
engineering notion of fitness-for-purpose, something that is
often very far from correctness.

In the following we recall some of the basic def-
initions for the framework tat will be used during
the case study. The interested reader is referred to
http://mcs.open.ac.uk/jgh23/ for more detail.

2.1 Problems

A problem, as defined in POE, has three elements: a real-
world context, W, a requirement, R, and a solution, S.

The problem context is a collection of domains (W =
D1, ..., Dn) described in terms of their known, or indicative,
properties, which interact through their sharing of phenom-
ena (i.e, events, commands, states, etc. [Jac01b]). More
precisely, a domain is a set of related phenomena that are
usefully treated as a behavioural unit for some purpose. A
domain D(p)c

o = N : E has name (N) and description (E),
the description indicating the possible values and/or states
that the domain’s phenomena (in p∪c∪o) can occupy, how
those values and states change over time, how phenomena
occur, and when. Of the phenomena: c are those controlled
by D, i.e., visible to, and sharable by, other domains but
whose occurrence is controlled by D; o are those observed
by D, i.e., made visible by other domains, whose occurrence
is observed by D; p are those unshared by D, i.e., sharable
by no other domain.

A problem’s requirement states how a proposed solution
description will be assessed as the solution to that prob-
lem. Like a domain, a requirement is a named description
with phenomena, Rcons

refs = N : E. A requirement descrip-
tion should always be interpreted in the optative mood, i.e.,

1An axiomatic problem is a problem whose known fit-for-purpose so-
lution is known.

as expressing a wish. As to the requirement’s phenomena:
cons are those constrained by R, i.e., whose occurrence is
constrained by the requirement, and whose occurrence the
solution affects in providing a solution; refs are those ref-
erenced by R, i.e., whose occurrence is referred to but not
constrained by the requirement.

A solution is also a domain, S(p)c
o = N : E, intended

to solve a problem, i.e., when introduced into the problem
context will satisfy the problem’s requirement. The possi-
ble descriptions of a solution range over many forms, from
high-level specification through to detailed designs. As a
domain, a solution has controlled, observed and unshared
phenomena; the union of the controlled and observed sets is
termed the specification phenomena for the problem.

A problem’s elements come together in POE in a prob-
lem sequent2:

D1(p1)c1
o1

, . . . , Dn(pn)cn
on

, S(p)c
o ` Rcons

ref

Here ` is the problem builder and reminds us that it is the
relation of the solution to its context and to the requirements
that we seek to explore. By convention, the problem’s solu-
tion domain, S, is always positioned immediately to the left
of the `.

The descriptions of a problem’s elements may be in any
language, different elements being described in different
languages, should that be appropriate. So that descriptions
in many languages may be used together in the same prob-
lem, POE provides a semantic meta-level for the combina-
tion of descriptions; notationally, this is a role of the ‘,’
that collects into a problem sequent the domains that ap-
pear around the turnstile, formally making each visible to
the others3.

2.2 Problem transformation

Problem transformations capture discrete steps in the
problem solving process. Many classes of transformations
are recognised in POE, reflecting a variety of engineering
practices reported in the literature or observed elsewhere.
Problem transformations relate a problem and a justification
to (a set of) problems. Problem transformations conform to
the following general pattern. Suppose we have problems
W, S ` R, Wi, Si ` Ri, i = 1, ..., n, (n ≥ 0) and justification
J, then we will write:

W1, S1 ` R1 ... Wn, Sn ` Rn [NAME]
〈〈J〉〉W, S ` R

2As here, for brevity, we will sometimes omit the phenomena deco-
rations and descriptions in W, S and R whenever they can be inferred by
context.

3A situation similar to that found in the propositional calculus in which
conjunction and disjunction, etc, serve to combine the truth values of the
atomic propositions.

2



to mean that, derived from an application of the NAME
problem transformation schema (discussed below):

S is a solution of W, S ` R with adequacy argu-
ment (CA1∧ ...∧CAn)∧J whenever S1, ..., Sn are
solutions of W1, S1 ` R1, ..., Wn, Sn ` Rn, with
adequacy arguments CA1, ..., CAn, respectively.

Engineering design under POE proceeds in a step-wise
manner: the initial problem forms the root of a development
tree with transformations applied to extend the tree upwards
towards its leaves. Branches are completed by problem
transformations that leave the empty set of premise prob-
lems4.

2.3 Assurance-driven Development

A problem transformation schema defines a named class
of problem transformations, describing the way in which
the conclusion problem (that below the line) is related to the
premise problem(s) (those above the line). How a problem
is transformed is given in a problem transformation schema
by pattern matching of the elements of the conclusion prob-
lem, with those matched elements repeated as appropriate
to specialise both the premise problem(s) and justification
obligation (explained below).

Here is the transformation schema for CONTEXT INTER-
PRETATION by which the context W is interpreted as W ′:

W ′,S ` R [CONTEXT INTERPRETATION]
〈〈Explain and justify the use ofW′ overW〉〉W,S ` R

The justification obligation is a condition that must be dis-
charged for an application of a schema to be solution pre-
serving. Each schema has its own general form of justifi-
cation obligation; that for CONTEXT INTERPRETATION is
shown in the rule. However, the specific form will depend
upon the development context as well as other factors. A
discharged justification obligation contributes towards the
adequacy argument: in assurance-driven design, the needs
of an assurance case will be paramount in determining the
justifications that should be sought, and so which rules and
in which sequence they should be applied.

The structure of a justification within assurance-driven
development has a special form, reflecting the needs of the
assurance case that will be designed alongside the product.
Suppose, for instance, we wish to perform the step labelled
STEP ID which transforms the problem P under the NAME
transformation schema, then the justification will typically
consist of the following:

STEP ID: Application of NAME to problem P

4The premise set will be empty if the problem is axiomatic, as defined
in section Section 2.

JUSTIFICATION J: A justification can be named for ease of
reference.

DESCRIPTIONS & PHENOMENA: The collection of descrip-
tions and phenomena of the domains and requirements intro-
duced into the problem by the step or the manipulations defined
thereon by the step. For an application of the Context Interpre-
tation step, for instance, a detailed description of the elements
of W and W ′ would be given, alongside any relationship that
holds between them, such as shared descriptions, etc.

CONCERN: Name
STATUS: Status

A concern (c.f., [Jac01b]) is something that is important
to the development, presumably because it relates to some
stake-holder in the process. In high integrity development,
for instance, the reliability concern is likely to arise; a de-
sign that does not address such a concern in such a context is
likely to be unvalidatable. The status of a concern is one of
pending, discharged, undischargeable. The work appertain-
ing to the discharge of a concern is structured: each concern
has associated with it the following:

CLAIM: The statement of the claim(s) that will discharge
the concern;

ARGUMENT & EVIDENCE: The reason to believe each
claim (or the reason it does not hold);

RISKS: A description of the risks involved in continuing
the development should the concern fail to be discharged,
and/or the secondary risk introduced by the discharge of the
concern. A description of the treatment of risks residual to
the step.

A concern established as part of a step may be addressed
(and therefore discharged) in design steps subsequent to that
in which it is established, i.e., when, as part of other design
steps, evidence in support of its associated claim is discovered.
The argument and evidence may, therefore, make reference to
other concerns, arguments and evidence in the design tree. The
validity concern for a step, that subject to external validation
by problem- and solution-owning stake-holders, will typically
be required to ensure that relationships between concerns and
their discharge are adequate.

CONCERN: Step Validity
STATUS: Status

The status of the step validity concern, possible values in-
clude pending, signed-off, undischargeable

ARGUMENT & EVIDENCE: Explanation of the status after
validation, including the relationships where evidence was
gathered in the design, and the treatment chosen for the resid-
ual risk of the step.

SIGNATORY: To recognise the stake-holder or stake-
holders that signed-off the step.

Each element is optional, typically depending on the de-
velopmental stage and context.

3



3 POE instantiated for safety-critical soft-
ware development

We have already applied POE in support of safety crit-
ical software developments [MHR07b, HMR07]. In those
papers our focus was on the evaluation for safety of pro-
posed candidate solution structures (i.e., partial solutions;
architectures) early in development. In those papers, we at-
tempted assurance-driven design for the first time and drew
conclusions as to sequencing of steps that it required. The
result is shown in Fig. 1 presented as a UML activity dia-
gram. The activities in the figure include the following:

Context and Requirement Interpretation to capture (in-
creasing) knowledge and detail in the context and re-
quirement of the problem (Activity 1; Context Inter-
pretation was defined in Section 2.3);

Solution Intepretation and Expansion to structure the
solution (or part thereof) according to a candidate ar-
chitecture (Activity 2);

Preliminary safety analysis (PSA) for early assessment
of a candidate architecture (Activity 3).

Although of no further concern to us in this paper, the
techniques chosen for application during the PSA depend
on the level of criticality of the system under design and
may include Functional Failure Analysis (FFA) [SAE96],
functional Fault Tree Analysis (FTA) [VGRH81], or the use
of fully formal specification languages and logical proof
(for instance, [Jac01a], as used in [MHR07b]). The level
of criticality is determined by whether the system is safety
critical (highest integrity required) or safety related (high
integrity, but not as high as safety critical).

3.1 The choice point

The choice point (labelled 4) in the figure depends on the
outcome of the PSA, which determines whether the current
candidate architecture is viable as the basis of a solution
or whether, instead, we should backtrack the development
to find another candidate solution or explore the problem
further.

In POE terms, choice point 4 needs to be made in the
solution domain—it is a choice regarding the suitability of
a solution architecture in a particular problem context—and
so falls within the remit of a solution-owning stake-holder
(a description of which will be given later). The artefacts
upon which the choice is based are the, perhaps incomplete,
solution against which the PSA was run. We have observed
that it is not necessarily that case that a complete solution
exists when the PSA is completed—one may, for instance,
have only have chosen a solution architecture that is hoped

to form the basis of a solution. The nature of the choice is
then something like “Is there good reason to believe that a
solution can exist based on this architecture?” As such, it is
clear that the decision made need to be revisited later during
development.

Context & 
Requirement 

Interpretation

Solution 
Interpretation & 

Expansion

Preliminary
Safety Analysis

[PSA ok]

[not PSA ok]

null problem

solution development

1

2 3
4

Figure 1. POSE Safety Process Pattern: to move towards
the solution of a safety-critical problem, we first understand
the problem better (Activity 1), use engineering judgement
to determine a candidate solution architecture (Activity 2),
then test the candidate for satisfaction of safety concerns,
iterating if necessary.

3.2 Abstracting the POSE safety process
pattern for general engineering use

Although useful in the safety-critical software arena, the
POSE safety pattern does not consider the needs of valida-
tion in the problem space, nor the roles of those who will
perform that validation. In the new process illustrated in
Figure 2, three areas are distinguished, the various activi-
ties are renamed, and one new activity and one new choice
are added.

The roles are our names for those whose role places them
at the centre (the problem solver) or on the periphery (the
validating stake-holders) of problem solving, described in
more detail below.

The activities are Partial Candidate Problem Explo-
ration (renamed from Context and Requirement Interpre-
tation in Figure 1); Partial Candidate Problem Validation,
a new choice point, added (see below); (Partial) Candidate
Solution Exploration; and Partial Candidate Solution Val-
idation (again, see below). The partial nature of the can-
didates is so that early problem solving can focus on parts
of the problem or solution, rather than the whole problem
straight away. The relationship between the activities is
shown in Figure 2.

In the figure, there are roles of problem owning stake-
holder(s), solution owning stake-holder(s), and problem
solver, their respective scopes indicated by shading. A

4



problem owning stake-holder is someone who role is to val-
idate a (parital) candidate problem description that results
from Partial Candidate Problem Exploration. It is impor-
tant to note that the roles, as such, do not overlap.

There are many familiar examples of problem owning
stake-holders. These include, but are not limited to, those
of customer (those that pay for a product), clients (those
that pay for a service), regulator (those requiring safety, for
instance), end-user (those who will use the product or ser-
vice when commissioned). It is the problem owning stake-
holders’ role to answer the question “Is this (partial) prob-
lem description valid for you?” Depending on the problem-
owning stake-holders’ responses, the problem solver may
need to re-explore the problem (when the answer is ”No!”),
or move on to try to find a (partial) solution (when the an-
swer is “Yes”).

The role of the solution owning stake-holder(s) is to val-
idate a candidate solution description, such as an architec-
ture (a partial solution) or choice of component (i.e., some-
thing of complete functionality). The roles of solution own-
ing stake-holders may be less familiar to the reader. They
include, but are not limited to, a development house’s chief
software architect—who knows which architectures their
organisation uses in solutions, an oracle—who determines
which of a number of features should be included in the
next release, or a project manager—who needs to timebox
particular activities; there are many other roles that fit so-
lution owning stake-holder. It is the solution owning stake-
holders’ role to answer the question “Is this (partial) solu-
tion description valid?” Depending on their response, the
problem solver may need to re-explore the solution (when
the answer is “No!”), move back to exploring this or a pre-
vious problem (when the answer is “No, but it throws new
light on the problem!”), or moving on to the next problem
stage (when the answer is “Yes!”).

The role of problem solver is that of the person or per-
sons that begins by trying to understand the problem and
iterates towards a solution. As indicated by the upward
pointing arrow that appears in the upper right of Figure 2,
iteration is not always local: it is, for instance, possible that
through the failed validation of a solution a previous prob-
lem description may be revealed as flawed, even if it has
been validated by a problem-owning stake-holder and so
invalid—problem-owning stake-holders make mistakes too!

It is worth emphasising that we do not preclude com-
munication between those that will perform the role of
problem- or solution-owning stake-holder, or problem
solver during the process of problem solving. Indeed, this
would be a very sensible option—even if just to manage the
expectations of the various stake-holders before the formal
validation is conducted.

Problem solver
Problem owning

stake-holder
Solution owning

stake-holder

(Partial) candidate
problem 

exploration

(Partial) candidate 
solution (PCS) 

exploration 

PCP 
validation

PCS
validation

PCS 
validation 

reveals local 
problem flaw1

2

3
4 

invalid 

valid

invalid 

valid

PC
S 

va
lid

at
io

n 
re

ve
al

s p
as

t 
pr

ob
le

m
 fl

aw
s

Figure 2. POE process Pattern: to move towards a partial
solution to a general engineering problem, we first under-
stand the problem better (1), reflecting our understanding
of the problem through validation with the problem holding
stake-holder (2); use engineering judgement to determine
a candidate solution architecture (3), then test the candidate
for satisfaction of safety concerns, iterating if necessary (4).

3.3 Doing engineering design

Previously, we have focused on safety critical develop-
ment in POSE, whence the justification obligation must sat-
isfy the interested stake-holders that their concerns (similar
in nature to those considered in [Jac01b]) about safety are
discharged. In this paper, we map the same case study to
the POE pattern, using to it for an opportunity to explain
the various roles and artefacts. This will involve us in con-
sidering (and reconsidering) in detail the various roles.

The justification obligations for the schemata underlying
these exploration phases generate concerns that should be
discharged as part of problem solving. A concern leads to
a claim stated within a justification, the claim being that the
concern is discharged by the development step. The jus-
tification will, eventually, contain arguments and evidence
that the claim is valid so that the concerns is discharged.
We say eventually because some concerns can only be dis-
charged after the ramifications of a problem transformation
are known which is, typically, later in the development tree.

One particularly important concern is the step validity
concern—for which the associated claim is a particular step
is validatable—as it is the point of contact of the POE pro-
cess with stake-holders external to the creative process of
the problem solver; in particular, the problem and solution
owning stake-holders. The step validity concern associated
with a problem exploration step is dischargeable only with
reference to the problem-owning stake-holder. The step va-
lidity concern associated with a solution exploration step

5



is dischargeable only with reference to the solution-owning
stake-holder. It is the discharge of step validity concerns
that require the problem solver to consult with stake-holders
(although, of course, consultation with stake-holders may
also take place in problem and/or solution exploration).

On the other hand, like other concerns, the discharge of
step validity concerns may be postponed. Depending on
the criticality of a development, the risk exposed by such a
postponement may be unacceptable—given that a problem-
or solution-owning stake-holder has not validated a partial
problem or solution candidate, the problem solver may be
solving the wrong problem with incorrect solution tech-
nologies, or both. In this case, the future development is
based on an assumption of validity. The commitment of de-
velopmental resources on this assumption is the source of
the risk, although it may be more or less mitigated by prob-
lem solver experience. Of course, even if the risk is man-
aged by discharging the step validity concern, there may be
secondary risks, such as the a problem-owning stake-holder
being incorrect in their validation. It may therefore be im-
portant, as part of the justification for the development step
to record the explicit instance of step validity concern dis-
charge so that it is traceable; the recording of concern dis-
charges are properly a part of all POE steps.

4 Case study

The case study is a real development, performed by
the authors and Derek Mannering of General Dynamics
UK Ltd, based on systems flying in real aircraft. The
case study is abbreviated only in the sense that some de-
tail has been removed: it retains all essential complex-
ity; more detail, and its original context, can be found in
[MHR07b, HMR07, MHR07a, MHR07c]. It concerns the
development of the Decoy Controller component of a de-
fensive aids system whose role is to control the release of
decoy flares providing defence against incoming missile at-
tack.

In POE, to record that we have something that is deserv-
ing of the resources that will be used in solving a problem
we give a marker for the start of the problem solving pro-
cess: all problem solving starts from the null problem—the
problem of which we know nothing other than its existence:

Pnull : W : null, S : null ` R : null

null is used as the description for W, R and S to indicate that
nothing is known about them.

Moving from the null problem to that of the case study is
a first problem exploration step. The details of the problem
exploration follow.

4.1 Initial Problem Exploration

During a problem exploration, the problem solver will
work he following problem:

P1 :

Defence Systemcon, Dispenser Unitout
fire,sel,

Aircraft Status Systemair,

Pilotok, Decoy Controllerfire,sel
con,out,air,ok

` Rfire,sel
con,out,air,ok

The justification obligation for an interpretation schema
application requires us to justify a newly provided descrip-
tion over the existing one. Here is the (collated) justification
for all intepretation transformations from Pnull to P1 which
add knowledge of the problem and its parts.

STEP 1: Application of CONTEXT AND
REQUIREMENT INTERPRETATION to problem

Pnull

JUSTIFICATION J1: The identified requirement, domains
and their relevant properties are summarised below:

Name Description

Defence
System

The computer responsible for controlling and
orchestrating all defensive aids on the aircraft

Dispenser
Unit

Mechanical device for releasing decoy flares
used as defence against incoming missile at-
tack. It has number of different flare types,
and includes a safety pin that, when in place,
prevents flares from being released

Aircraft
Status
System

The system which monitors the status of
certain key aircraft parameters, including
whether the aircraft is in the air

Pilot The pilot, who can signal the controller that
flare release should be allowed

Decoy
Controller

null

R The conjunction of:

Ra: On receiving a con command from De-
fence System, Decoy Controller shall obtain
the selected flare type information from the
relevant field in con, for use in its sel mes-
sage to the Dispenser Unit to control flare se-
lection.

Rb: Decoy Controller shall issue a fire com-
mand only on receiving a con command from
Defence System. This shall be the only way
in which a flare can be released.

Rc: Decoy Controller shall cause a flare to
be released by issuing a fire command to the
Dispenser Unit, which will fire the selected
flare.

continued

6



Name Description

Rd: Decoy Controller shall only issue a fire
command if its interlocks are satisfied, i.e.
aircraft is in air (air = yes), safety pin has
been removed (out = yes) and pilot has is-
sued an allow a release command (ok = yes).

RS: Decoy Controller shall mitigate H1 and
H2, where H1 is the inadvertent firing of de-
coy flare on ground. Safety Target: safety
critical, 10−7 fpfh (where fpfh is ‘failures per
flight hour’); and H2 is the inadvertent firing
of decoy flare in air. Safety Target: safety
critical, 10−7 fpfh.

PHENOMENA: Phenomena and their control and sharing (see
P1) are known from the existing system components as:

Name Description

fire Command to release the selected flare type

sel Command to select flare type

out Pin status: out = yes when pin removed

con Command to select and release a flare type

air Aircraft status: air = yes when aircraft airborne

ok Pilot intention: ok = yes then allow release

CONCERN: Interpretation validity
STATUS: Discharged

CLAIM: The interpretations are valid

ARGUMENT & EVIDENCE: The choice of domains fol-
lows from the aircraft level safety analysis and the required
choice of interlocks. The Defence System, Dispenser Unit,
Aircraft Status System are existing components of the avion-
ics system, with well-known properties (that could be vali-
dated through direct inspection). The Pilot is trained to fol-
low protocol rigorously.
The customer requirement was provided as an input to the
developer team. Hazard H1 and H2 came from an aircraft
level safety analysis which allocated safety requirements to
the main aircraft systems, including the Decoy Controller.
Hazards H1 and H2 have both systematic (safety related) and
probabilistic components. To counter these hazards, the fol-
lowing safety interlocks were required as input to the Decoy
Controller to provide safety protection: an input from the pi-
lot indicating whether the release should be allowed; an input
indicating whether the aircraft is in the air; and an input indi-
cating whether the safety pin, present when the aircraft is on
the ground, is in place. The expected behaviour is that flare
release should be inhibited if any of the following conditions
hold: a) the pilot disallows flares; b) the aircraft is not in the
air; or c) the safety pin has not been removed. These inter-
locks provide extra assurance for hazard H1, but not for H2.
Therefore, the safety task is to demonstrate that H2 can be
satisfied, with the knowledge that if H2 can be satisfied, then
so can H1.

CONCERN: Step Validity
STATUS: Pending

Of course, the descriptions at which we have arrived
through the problem exploration step have not been arrived
at in a vacuum: as shown in the argument and evidence sup-
porting a claim of step validity, they were arrived at only af-
ter careful work predicated on discussion with the customer
and reference to best practice. The step validity concern
should, then, be easy to discharge by appeal the problem-
owning stake-holder (in this case the customer for the sys-
tem), and in a real development this should be done unless
the risk of not doing it acceptable.

So that we can progress towards solution exploration, we
will assume that the validity concern is discharged in this
case so that we may write:

STEP 1: Sign-off of CONTEXT AND
REQUIREMENT INTERPRETATION to problem

Pnull

CONCERN: Step Validity
STATUS: Signed-off

DETAILS: The descriptions used were arrived at after a
successful bid to tender, when the mechanical outline, ap-
proximate weight and power envelope of the system were
established. Subsequent communications with the customer
were used to clarify the requirements and properties of the
system environment. The remainder of the system was de-
signed in response to the post bid revised customer require-
ments including their allocation to software and hardware as
appropriate

SIGNATORY: Customer

In general, recording who, where and when the validity
concern was discharged would also be sensible as would au-
thentication of—perhaps a signature—of the validator, for
traceability reasons.

4.2 Solution Interpretation and Expan-
sion

Given our validated problem statement, we may move
towards exploration of the solution.

An AStruct (short for Architectural Structure) is used to
add structure to a solution domain, through an application
of SOLUTION INTERPRETATION. An AStruct combines, in
a given topology, a number of known solution components5

5There are also constraints on the phenomena sets, which we omit here
for brevity; the reader is referred to [HRJ07] for the full definition.

7



(the Ci below) with solution components yet to be found
(the Sj below). Its general form is:

AStructName[C1, ..., Cm](S1, ..., Sn)

with AStructName the AStruct name. Once the solution is
interpreted by providing and justifying an AStruct, SOLU-
TION EXPANSION generates premise problems by moving
the already known components Ci to the environment—
expanding the problem context—whilst simultaneously re-
focussing the problem to be that of finding the solution com-
ponents Sj that remain to be designed. The requirement and
context of the original problem is propagated to all sub-
problems.

A particular case, which is relevant to our case study, is
when there is only one component to be found, that is, the
AStruct has the following form:

AStructName[C1, ..., Cm](S)

In this case expansion only generates one premise problem
as follows:

W, C1, ..., Cm,S:null ` R
[SOLUTION
EXPANSION]W, S : AStructName[C1, ..., Cm](S) ` R

In the case study, the following AStruct encodes the ini-
tial candidate architecture chosen for the Decoy Controller:

DecoyContAS[IIint
ok,air,out, DMsel,fire?

con ](Safety Controllerfire
int,fire?)

which includes two extant components, II and DM and one
to be found component Safety Controller. Therefore, a sub-
sequent expansion leads to problem:

P2 :

Defence Systemcon, Dispenser Unitout
fire,sel,

Aircraft Status Systemair, Pilotok,

IIint
ok,air,out, DMsel,fire?

con , Safety Controllerfire
int,fire?

` Rfire,fire?,sel
con,out,air,ok

Here is the combined development step:

STEP 2: Application of SOLUTION
INTERPRETATION AND EXPANSION to

problem P1

JUSTIFICATION J2: The identified architecture, its compo-
nents and relevant properties are summarised in the table be-
low:

Name Description

Decoy
Controller

DecoyContAS[IIint
ok,air,out, DMsel,fire?

con ](Saf -
ety Controllerfire

int,fire?)

continued

Name Description

DM A microcontroller used to decode con mes-
sages from Defence System and when appro-
priate issue a fire command request, fire?, to
the Safety Controller. In the schematic: the
message buffer MB holds the received con-
trol message con; the micro-controller uP de-
codes it to extract: a) a fire command request
(leading to fire?), and b) the selected flare
type (leading to sel).

uP MB DS!{con}

DM!{sel}

DM!{fire?}

II Collects together the interlock inputs and
passes their status to Safety Controller (int)

Safety Con-
troller

null

PHENOMENA: The new phenomena introduced by the archi-
tecture are:

Name Description
fire? Command to release the selected flare type
int Status of combined interlocks

CONCERN: Sound engineering
STATUS: Discharged

CLAIM: The choice of candidate solution architecture ex-
hibits sound safety engineering judgement

ARGUMENT & EVIDENCE: The architecture is chosen to
minimise the number and extent of the safety related func-
tions, localising them to simple, distinct blocks in accor-
dance with best practice.

CONCERN: Candidate solution validity
STATUS: Pending

CLAIM: The chosen solution architecture does not prevent
the satisfaction of R.

We note that, due to the fact that the solution exploration
is incomplete as yet, the pending validity concern will not
need to be discharged until after the feasibility concern. Of
course, discussions that might arise due to addressing the
validity concern may inform the PSA; however, there is no
risk associated with the validity concern until a point when
the decision to commit further resources to the development
is required; the first point at which this holds is after we
know whether the current architecture is the basis of a tech-
nically feasible solution or not.

8



4.3 Preliminary Safety Analysis

The justification of the previous transformation step
is incomplete: the feasibility concern remains to be dis-
charged. The related claim is that the chosen architecture
candidate should not prevent an adequately safe solution
and yet, as we shall argue, it does prevent an adequately safe
solution. In the worst case, to continue the design without
checking feasibility uncovers the risk that the final product
cannot be argued safe. Traditionally, such risks are miti-
gated through over-engineering of the solution, but this typ-
ically adds to the development cost.

Here, the risk is managed through a Preliminary Safety
Analysis (PSA), eagerly applied in the attempt to discharge
the feasibility concern. The goal of a PSA is to: (a) confirm
the relevance of hazards allocated by the system level haz-
ard analysis; (b) identify any further hazards to be added
to the list; and (c) validate the architecture against the
safety targets associated with the identified relevant haz-
ards. Many techniques can be applied to perform a PSA. In
[MHR07c] we used a combination of mathematical proof,
Functional Failure Analysis (FFA) [SAE96] and functional
Fault Tree Analysis (FTA) [VGRH81].

Note that PSA is not a POSE transformation per se (no
POSE schema defines a PSA). Instead it is a technique
which we use to discharge one of the concerns in the jus-
tification obligation for SOLUTION INTERPRETATION.

STEP 2: Application of SOLUTION
INTERPRETATION AND EXPANSION to

problem P1 (cont’d)

CONCERN: Candidate solution validity
STATUS: Undischargeable

CLAIM: The chosen solution architecture does not prevent
the satisfaction of R. This claim does not hold.
ARGUMENT & EVIDENCE: We applied FFA to each ar-
chitectural component in turn. The significant results6 from
applying FFA to the DM are shown in Table 1, where three
problem cases were identified: F2, F3 and F5, with ‘Yes’ in
the Hazard column.
A functional FTA applied to DM and using the three FFA
problem cases F2, F3 and F5, indicates that a failure in uP
(systematic or probabilistic) could result in the fire? failing
on. The Pilot’s allow input provides some mitigation, but as
soon as this is set (ok = yes) a flare will be released, which is
undesirable behaviour. In other words, with this architecture,
H2 is only protected by the Pilot’s allow input. If fire? failed
on, then as soon as the Pilot indicated an intention to allow
flare release, by selecting the switch, then the flare would
be released, which is not the design intention. Therefore the

6There is insufficient space to present the full PSA, and so we sum-
marise only its main elements to demonstrate the process followed.

Table 1. FFA Summary for Safety Controller
Id Failure Md Effect Haz
F1 No fire? Release inhibited No
F2 fire? at wrong

time
Inadvertent release Yes

F3 fire? when not re-
quired

Inadvertent release Yes

F4 Intermittent fire? Could inhibit release No
F5 Continuous fire? Inadvertent release Yes

safety analysis indicates that fire? needs to have a safety in-
volved (not critical) integrity. This can only be achieved with
the existing design by upgrading all of the design to be safety
involved. That is, by assigning fire? to the uP, we require
that all uP functionality must be of fire?s required safety in-
tegrity, including much of the uPs functionality (timing, BIT,
etc.) that is not safety-related. Further, any updates to the
uP software have to satisfy the safety involved integrity. To
make the uP safety-involved is not possible. The conclusion
of the PSA is that the selected DM component, hence the
architecture, is not a suitable basis for the design—no ade-
quate solution can be derived from its parametrisation, hence
the feasibility concern cannot be discharged.

As there is a concern that is undischargeable, including
the step validity is not appropriate.

4.4 Backtracking the development

The failed PSA causes the iteration of the POSE safety
process, i.e., the development is backtracked to P1 and a
second candidate architecture chosen, informed by what we
learned from the failed feasibility claim.

The second iteration of the POSE process is similar to
the first: although there is new information associated with
the revised architecture, the remainder of the transforma-
tions may be carried across from the first iteration without
change, simplifying this second (and any subsequent) iter-
ation. The second candidate architecture differs from the
original in that we replace DM with higher integrity com-
ponent DM′. Here is the development step:

STEP 2.1: Re-application of SOLUTION
INTERPRETATION AND EXPANSION to P1

JUSTIFICATION J′2: The newly identified architecture, its
components and relevant properties are summarised below
(where they differ from J2):

Name Description

Decoy
Controller

DecoyContAS[IIint
ok,air,out, DM′sel,fire?

con ](Saf -
ety Controllerfire

int,fire?)

continued

9



Name Description

DM′ A microcontroller used to decode con mes-
sages from Defence System and when appro-
priate issue a fire command request, fire?, to
the Safety Controller. In the schematic: the
message buffer MB holds the received control
message con; the micro-controller uP decodes
it to extract the selected flare type (leading to
sel); the FPGA (a Field-Programmable Gate
Array, [HH05]) component decodes it to ex-
tract a fire command request (leading to fire?).

uP

MB DS!{con}

DM’!{sel}

DM’!{fire?} FPGA

Safety Con-
troller

null

INCLUDES: Includes J2, with alterations as discussed below.

CONCERN: Sound engineering
STATUS: Discharged

CLAIM: The choice of candidate solution architecture ex-
hibits sound safety engineering judgement

ARGUMENT & EVIDENCE: The chosen architecture is
similar to the previous one (see J2) except that as a result
of the PSA we require the fire? signal to be safety involved
(but not safety critical) so that to allow the overall architec-
ture to satisfy its safety target. We do this by taking the safety
involved functions out of the uP component and route them
through a separate high integrity path. Details omitted for
brevity.

CONCERN: Candidate solution validity
STATUS: Discharged

CLAIM: The chosen solution architecture does not prevent
the satisfaction of R.

ARGUMENT & EVIDENCE: Omitted, for brevity

As a result of this step, we arrive at:

P′2 :

Defence Systemcon, Dispenser Unitout
fire,sel,

Aircraft Status Systemair, Pilotok,

IIint
ok,air,out, DM′sel,fire?

con , Safety Controllerfire
int,fire?

` Rfire,fire?,sel
con,out,air,ok

Here, to manage risk, we much discharge the validity
concern with reference to a solution-owning stake-holder,
for instance the safety authority, who will be able to de-
cide whether the chosen architecture satisfied development
requirements such as availability—whether the architecture
is used within the development body—and whether suffi-
cient experience exists or can be made to exist within the

development organisation to make use of it, as well as con-
firming that the arguments underlying the PSA are sound.
We arrive at:

STEP 2.1: Sign-off of re-application of
SOLUTION INTERPRETATION AND

EXPANSION to P1

CONCERN: Step Validity
STATUS: Signed-off

ARGUMENT & EVIDENCE: The current solution is not
computationally complete so no testing of a computationally
complete product was possible. However, it is the assess-
ment of the safety authority that the reasoning underlying
the PSA that justifies this choice of architecture is valid and
sound.

SIGNATORY: Safety Authority

Note that we do not yet have a working solution; rather
we have an architecture for a solution consisting of a micro-
processor, an FPGA and a Message Buffer. The discharge
of the validity concern does not remove all risk in proceed-
ing with the development. For instance, the risk that the
development will again need to be backtracked to find a
third candidate solution remains. However, there risk that
the solution-owning stake-holder will not sign off a solution
based on this architecture has been shared (or transferred) to
that solution-owning stake-holder.

5 Discussion

The POE notion of problem requires a separation of con-
text, requirement and solution, with explicit descriptions of
what is given, what is required and what is designed. This
improves the traceability of artefacts and their relation, as
well as exposing all assumptions to scrutiny and validation.
That all descriptions are generated through problem trans-
formation forces the inclusion of an explicit justification
that such assumptions are realistic and reasonable. In par-
ticular, safety requirements are justified as valid, are fully
traceable with respect to the designed system, and evidence
of their satisfaction is provided by the adequacy argument
of a completed POE development tree.

We have shown (a) how (partial) problem and solu-
tion validation are used to manage developmental risk and
(b) have shown how an assurance case can be constructed
alongside the development of a product.

That product and assurance argument development are
co-designed is a fundamental possibility under POE: no
transformation should occur without appropriate justifica-
tion (although such justification may not be immediately

10



available, requiring some exploratory development to be
done first). On the other hand, development risks can be
taken by tentative transformation which are not completely
justified: in such cases concerns can be stated as suspended
justification obligations to be discharged later on in the pro-
cess. This adds the flexibility of trying out solutions, while
still retaining the rigour of development and clearly identi-
fying points where backtracking may occur.

Finally, POE defines a clear formal structure in which
the various elements of evidence fit, that is whether they
are associated with the distinguished parts of a development
problem or the justifications of the transformation applied
to solve it. This provides a fundamental clarification of the
type of evidence provided and reasoning applied. Moreover,
that the form of justification is not prescribed under POE
signifies that all required forms of reasoning can be accom-
modated, from deductive to judgemental, within a single
development.

Acknowledgments

We acknowledge the financial support of IBM and of SE
Validation Limited, in particular Colin Brain for his many
comments and insights. We also thank Derek Mannering
whose work first instantiated the POE process pattern, and
our colleagues in the Centre for Research in Computing at
The Open University, particularly Michael Jackson.

References

[EDD] Engineering Council of South Africa Standards and
Procedures System Definition of Terms to Support the
ECSA Standards and Procedures System.

[HH05] Adrian Hilton and Jon G. Hall. Developing critical
systems with PLD components. In Tiziana Margaria
and Mieke Massink, editors, FMICS ’05: Proceed-
ings of the 10th international workshop on Formal
methods for industrial critical systems, pages 72–79,
New York, NY, USA, 2005. ACM Press.

[HMR07] Jon G. Hall, Derek Mannering, and Lucia Rapanotti.
Arguing safety with problem oriented software engi-
neering. In 10th IEEE International Symposium on
High Assurance System Engineering (HASE), Dallas,
Texas, 2007.

[HRJ07] Jon G. Hall, Lucia Rapanotti, and Michael Jack-
son. Problem oriented software engineering: A
design-theoretic framework for software engineering.
In Proceedings of 5th IEEE International Confer-
ence on Software Engineering and Formal Methods,
pages 15–24. IEEE Computer Society Press, 2007.
doi:10.1109/SEFM.2007.29.

[HRJ08] Jon G. Hall, Lucia Rapanotti, and Michael Jackson.
Problem-oriented software engineering: solving the

package router control problem. IEEE Trans. Soft-
ware Eng., 2008. doi:10.1109/TSE.2007.70769.

[Jac01a] Daniel Jackson. Micromodels of software:
Lightweight modelling and analysis with alloy.
Software Design Group MIT Lab for Computer
Science. http://alloy.mit.edu/reference-manual.pdf,
2001.

[Jac01b] Michael A. Jackson. Problem Frames: Analyz-
ing and Structuring Software Development Problems.
Addison-Wesley Publishing Company, 1st edition,
2001.

[MHR07a] Derek Mannering, Jon G. Hall, and Lucia Rapanotti.
Safety process improvement: Early analysis and justi-
fication. In Proceedings of the 2nd Institution of Engi-
neering and Technology Conference on System Safety
2007, 2007.

[MHR07b] Derek Mannering, Jon G. Hall, and Lucia Rapan-
otti. Safety process improvement with POSE & Al-
loy. In Francesca Saglietti and Norbert Oster, editors,
Proceedings of The 26th International Conference
on Computer Safety, Reliability and Security (SAFE-
COMP 2007), volume 4680 of Lecture Notes in Com-
puter Science, pages 252–257, Nuremberg, Germany,
September 2007. Springer-Verlag.

[MHR07c] Derek Mannering, Jon G. Hall, and Lucia Rapanotti.
Towards normal design for safety-critical systems. In
M. B. Dwyer and A. Lopes, editors, Proceedings of
ETAPS Fundamental Approaches to Software Engi-
neering (FASE) ’07, volume 4422 of Lecture Notes in
Computer Science, pages 398–411. Springer Verlag
Berlin Heidelberg, 2007.

[Pel99] Francis Jeffry Pelletier. A Brief History of Natural
Deduction. History and Philosophy of Logic, 20:1–
31, 1999.

[SAE96] SAE. ARP4761: Guidelines and Methods for Con-
ducting the Safety Assessment Process on Civil Air-
borne Systems and Equipment, 1996.

[VGRH81] W. Vesely, F. Goldberg, N. Roberts, and D. Haasl.
Fault Tree Handbook, volume NUREG-0492. U.S.
Nuclear Regulatory Commission, 1981.

11


