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Abstract

Software systems evolve in response to changes in stake-
holder requirements. Lack of documentation about the orig-
inal system requirements can make it difficult to analyse
and implement new requirements. Although the recovery
of requirements from an implementation is usually not pos-
sible, we suggest that the recovery of problem structures,
which in turn inform the problem analysis of new require-
ments, is feasible and useful. In this paper, we propose
a tool-supported approach to recover and maintain struc-
tures of problems, solutions, and their relationships, for
specific new features in an existing system. We show how
these recovered structures help with requirements assess-
ment, as they highlight early in the evolutionary develop-
ment whether it is feasible to implement a new requirement.
We validate our approach using a case study of a medium-
sized open-source software system.

1 Introduction

Many software systems evolve to accommodate new
stakeholder requirements. Without accurate documentation
about the structure of an existing software system, it is dif-
ficult to address the problems imposed by the new require-
ments. For example, it is difficult to assess early in the de-
velopment whether the new requirement is feasible, and can
be implemented on the basis of extending existing solutions.
One manifestation of this difficulty in many long-lived sys-
tems is that these systems often behave in unexpected and
undesired ways when new features are implemented. In
many application domains, this is often called the ‘feature
interaction’ problem [8, 16].

This paper aims at recovering and maintaining the prob-
lem structures of existing system, so that the analysis of new
requirements can be more informed about their feasibility
and relation to the existing solutions. Towards this end, we
have developed a tool-supported approach to recover solu-
tion structures of existing software systems in order to in-
form problem analysis of new requirements. We applied

reverse engineering tools to automatically locate the solu-
tion structures relevant to a user requirement. On the basis
of the recovered solution structures, we extended the reflex-
ion model [26] to create the abstract problem structure for
the existing solutions. Then we introduced structural simi-
larity metrics to compare the extracted solution structures of
different requirements and that of different versions in the
evolutionary repository. The similarity metrics can also be
used to compare related problem structures.

We applied this tool to study the evolution of an open-
source text editor – Vim. Solution structures in terms of
callgraphs form the basis to retrospectively analyze fea-
tures, the implemented requirements, in various releases.
For the requirements analysis, we use Problem Frames [21]
to structure the context of the features in the problem space.
Although applied to a system with particular characteris-
tics, we believe our general approach may be easily adapted
to systems in different implementation settings. The main
contribution of the paper is a systematic tool support for the
recovery of problem structures from the solution structures
that can inform the requirements assessment.

The remainder of the paper is organized as follows. Sec-
tion 2 uses example feature interaction scenarios of Vim to
motivate the need for assessing new requirements. Section 3
overviews our approach to recover the problem structures to
support for the evolution of software systems. Section 4 dis-
cusses our techniques and their application to the selected
features of the Vim case study. Evaluation of our approach
is presented in Section 5. Related work is surveyed in Sec-
tion 6, whilst Section 7 provides some concluding remarks.

2 Motivating Examples

Before discussing the details and application of our ap-
proach, we first present a scenario of problem analysis in a
typical development of an evolving software system, called
Vim. Vim is selected for our study for three reasons: (i) it
is representative of medium-sized open source software de-
velopments, (ii) it has a long history of feature-based evolu-
tion, and (iii) it has previously been studied by the reverse
engineering community [28, 12].
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2.1 Development history of Vim

Vim [1] is a popular open-source ‘modal’ text editing
software, first released in 1991. The software has been
evolving since then, and every release may introduce new
features. For example, Vim 6 has more than 140 features,
the next major release Vim 7 added 19 new features. These
new features were incrementally developed and improved
over minor releases 6.1, 6.2, 6.3 and 6.4. The recent major
release Vim 7 has approximately 173K lines of C code, and
recently a bug fix version Vim 7.1 has been released.

Features in Vim generally refer to user accessible system
functionality in the solution space, and they can be identi-
fied from several sources. For example, features in a partic-
ular build of Vim can be identified from the preprocessing
macros in the header feature.h, in which features have
the prefix FEAT . Besides the source code, documentation
such as test cases, user manuals and release notes provide
more detailed descriptions of the features. However, we
found the preprocessing macros were most structured and
therefore amenable to automated extraction.

Although there is some documentation about Vim fea-
tures, the same cannot be said about its structure. Despite
this, Vim is widely recognized as a good quality legacy soft-
ware system, and has won several awards [2]. As in many
instances of evolutionary development of legacy systems,
introducing new features to Vim is difficult. According to
the reference manual in Vim 7, it contains over 400 bug
fixes: several fixes are related to minor errors but there
were also serious bugs, many of which caused the system
to crash. For example, there was a feature interaction be-
tween the Spell Completion, Spell Checking and Browsing
features in Vim 6.4, which was a fatal bug1.

There are, of course, several dimensions to addressing
such problems: perhaps, if there were more programmers,
more exhaustive test cases, more testing, some of these er-
rors may not have entered the software. One such measure
developers can take, this paper proposes, is to perform early
problem analysis of new features. The paper illustrates such
an approach using the following problem as running exam-
ples in this paper.

2.2 System crashes due to feature interaction

Vim has a feature “Completion”, which can be used, for
example, to match a partially completed file name to one
of the existing files in a directory. This feature is triggered
when a user presses Ctrl-X after keying “i”, which is called
“i Ctrl-X” in the user documentation.

Vim has another feature “Spell checking”, which high-
lights misspelled words according to the dictionary. This

1See the runtime\doc\version7.txt file of Vim 7.1.

feature is triggered when a user enters the command “:set
spell”.

These two features were then put together into a new fea-
ture “Spell Completion”. This composition seems straight-
forward enough: replace the directory look-up with a dic-
tionary look-up, and introduce a new user command “i Ctrl-
X s” to invoke the new feature by keying “s” after “Ctrl-X”.

However, Vim crashes after a user invokes this new fea-
ture in a particular context: when the word under the cursor
is at the beginning of a blank line, and then a third fea-
ture, “Window scrolling”, is triggered by pressing “Ctrl-E”.
The complexity of the interaction among these features gen-
erates a bug, which could have been discovered earlier if
one could anticipate the potential conflicts from the prob-
lem analysis.

2.3 The history of the involved features

To find the cause of the problem retrospectively, we
looked up the evolutionary history of Vim development.
The “Spell checking” feature had been requested since
2000, but the repository of Vim shows that developers did
not implement this fully until version 7.0 in May 2006 al-
though it was a high-priority pending feature request. This
is an indication of the difficulty in implementing this fea-
ture. Even after it had been implemented in version 7.0, the
above usage scenario still reveals a severe interaction with
other existing features, including “Completion”, “Window
scrolling”. The composed feature “Spell completion” was
introduced as a subfeature of “Spell checking” in version
7.0.

In this paper, we present an approach to assess how a
new requirement is related to existing solutions by system-
atically measuring the similarity between their structures.

3 Overview of Our Approach

A schematic view of this work is shown in Figure 1: we
explain in the following subsections each of the four steps in
our process to (1) extract solution structures at different lev-
els of abstraction from various sources including test cases,
usage scenarios and source code; (2) perform problem anal-
ysis by problem structures reflected from the abstract solu-
tion structures and the domain analysis; (3) compute sim-
ilarity metrics between structures; and (4) assess new re-
quirements using the similarity metrics of problem struc-
tures. Since the subject software systems are evolutionary,
all artifacts shown in the figure can be associated with a re-
lease, such as N and N + 1.



Figure 1. Overview of our approach

3.1 Extracting solution structures from features

Features refer to units of user accessible system func-
tionality in the solution space. A release of evolutionary
software system typically consists of a number of new fea-
tures which address some users requirements. Meanwhile,
development of such systems leaves behind for each re-
lease in the repository various solution artifacts, such as
source code and test cases. However, the relation between
the changes in the solution artifacts to the new features are
often implicit. In order to relate user requirements to the
solutions, it is therefore necessary to make the traceability
between features and solutions explicit.

Given a particular feature, in our approach, we extract
its related solution structures as callgraphs from the source
code, test cases and usage scenarios. Since problems are
often more abstract than solutions, in order to obtain prob-
lem structures in the end, we need to create abstraction from
the extracted solution structures. Therefore, we systemati-
cally compute increasingly more abstract callgraphs from
the concrete ones.

3.2 Recovering problem structures from abstract
solutions

In many software development projects, requirements
for new features can be recovered from documents such
as “feature request list” (user requests for new features),
“to do” list (a list of tasks developers intend to carry out)
and the bug reports (errors reported by users). The Problem

Frames approach is our chosen technique for problem anal-
ysis, but we envisage that other early requirements analysis
technique with an emphasis on problem structuring may be
used instead.

For each of the user requirements (features), we obtain
an initial sketch of the problem structure in a problem dia-
gram. In terms of problem frames, such a problem struc-
ture includes a list of domains that are connected to the re-
quirement. These domains are also connected to each other
through shared properties, also known as shared phenom-
ena. In relation to the abstract callgraphs, a domain typi-
cally corresponds to an existing module whereas a shared
phenomenon corresponds to an abstract call relation be-
tween the modules. This mapping helps with enriching the
problem analysis by uncovering domains and phenomena
hidden in the initial problem diagram.

3.3 Computing similarity metrics of structures

In order to assess the difficulty in employing existing so-
lutions to implement a new requirement, we need to com-
pare it with the solution structures of existing features. Yet
the new requirement has not been implemented, therefore
we need to compare the problem structures of the existing
features with that of the new requirement. Such a compar-
ison of problem structures should be informative, that is,
predicting possible similarities between the solution struc-
tures.

In this study, we define a suite of similarity metrics on
the problem/solution structures. Then we use the concrete
examples from our case study to choose from these metrics



the most consistent ones. These similarity metrics will then
be used for the requirements assessment.

3.4 Requirement assessment informed by similar-
ity metrics of problem structures

In the assessment of a new requirement, we use the simi-
larity metrics between its problem structure and that of other
existing features. If a new requirement has a substantially
higher degree of similarity to the existing structures than an-
other new requirement, then we can inform developers that
the former is more feasible to implement. If two features
have no similarity, then it is an indication that they do not
interact through function calls. On the other hand, if they
share a large number of domain properties, then it indicates
a high potential to have feature interaction problems. The
similarity metrics may also help to investigate the patterns
in the requirements evolution.

The four processes of our approach are supported by en-
gineering tools. The extraction of solution structures and
the computation of similarity metrics are fully automated;
the recovery of the problems structures and the assessment
of the requirements are interactive, supported by several
graph visualization tools to highlight the characteristics of
problem/solution structures.

4 The Case Study

In this section, we apply an instance of our approach to
analyze the evolution of Vim features in our case study.

4.1 Extracting solution structures from features

Using callgraphs as solution structures, we aim to re-
cover for each feature the relevant functions and modules
systematically.

First, we instrument each release of Vim to record a trace
of executed functions for the test cases of a certain fea-
ture. The instrumentation is done by using a tracing as-
pect through an aspect-oriented programming (AOP) tool,
ACC2. The tool weaves into every function a statement to
report the caller and the callee of the function call (e.g. call
relation) together with the name of the module that contains
the function being called (e.g., contain relation). A pseudo
code of the aspect is shown as follows.

before(): call($ $(...)) {
/* outputting a call relation between

this->funcName and this->targetName */
}
before(): execution($ $(...)) {
/* outputting a contain relation between

this->funcName and this->fileName */
}

2http://research.msrg.utoronto.ca/ACC/WebHome

This tool is C-specific, but similar AOP tools for C++
and Java are also widely available.

Many software developers write test cases to regressively
test the software. For example, Vim 7.0 has 62 test cases
written by its developers3. These test cases are often spe-
cific to the key features of the software. For example, test
cases 58 and 59 in Vim are related to the “Spell checking”
feature.

For example, the “Spell completion” feature was tested
by running the woven version of Vim 7.0. As a result,
367 distinct functions were called by 583 distinct call rela-
tions. Figure 2 illustrates the concrete callgraph at the low-
est abstraction level. These functions are contained by 34

Figure 2. The callgraph at detailed level for
the “Spell Completion” feature

file modules with 115 abstract calls between these modules.
By abstract call, we mean that there is at least a call be-
tween functions contained in the caller and callee modules.
Though more abstract, this callgraph is still too complex to
be analyzed at the problem level. Therefore, we focused
on high-level functions at level l, where l is the maximal
length of the paths from the root to the leaf functions in the
selected callgraphs. Figure 3 shows the abstraction of the
same callgraph with only functions called within 2 levels.
This callgraph now has only 19 modules and 16 abstract
call relations.

4.2 Recovering problem structures

From the requirements document, we can give an initial
sketch of the problem diagram for a user requirement. For
the “Spell Completion” feature, the requirement is: “When
user issues a command to automatically complete a word,
replace the incomplete word with a matching word in the
dictionary.” The requirement also indicates the problem

3Test cases are typically found in the directory src\testdir.
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Figure 3. The abstract callgraph at level 2 for
the “Spell Completion” feature

context with references to the user, incomplete word, dic-
tionary, and so on. The requirement is rather vague: it does
not say what happens if there is no word to complete. Such
concerns can be addressed after considering the richer con-
text of the problem reflected from the solution structures.
By examining the abstract solution structures, we identify
potential domains of the new feature and their relationships
to existing ones.

In Figure 5, we present an example problem diagram
for the “Spell completion” feature. In the diagram, the re-

l: KU!{WCCommand} m: B!{PartialWord, CompletedWord}
n: D!{WordList} q: SCF!{ReplaceWord}

Figure 4. High-level Problem Diagram for
Spell Completion Feature

quirement is shown inside the dotted oval. The Keyboard
User, Directory and Buffer represent the domains the fea-
ture interacts with. The machine, Spell Completion Feature,
should bring about an appropriate change in the buffer at the
user command so that a partial word is completed correctly
according to the dictionary. The solid lines are decorated

by the labels of shared phenomena, elaborated below the
diagram.

Informed by the solution structures, we can identify hid-
den domains and phenomena, for example, the “Screen”
domain connecting to the “Buffer” was not considered in
the initial problem analysis. The phenomena such as re-
placeWordAtCursor, getWordAtCursor were thus also un-
covered. In addition to them, “i Ctrl-X” and “s” are two
hidden phenomena of the existing “Keyboard User” do-
main.

c: B!{getWordAtCursor,replaceWordAtCursor}
l: KU!{WCCommand, i Ctrl-X, s}

m: SCF!{PartialWord, CompletedWord}
n: D!{WordList}
q: SCF!{ReplaceWord}

Figure 5. Enriched Problem Diagram for Spell
Completion Feature

However, when two subproblems with a shared domain
are composed, it is necessary to examine, for example,
whether one subproblem will leave the domain in a valid
state after it has accessed it. This is called a composi-
tion concern [21]. Vim developers, initially overlooked one
composition concern that arises in this problem composi-
tions. The phenomenon ReplaceWord leaves a null pointer
in the Buffer when it is called to replace an empty word. An
implicit assumption of the Screen feature is that the Buffer
does not have a null pointer when the screen is refreshed.
When these two features are invoked in that sequence, these
features interact, resulting in a system crash. We draw a
conclusion from this analysis: such errors could have been
detected early in the development through problem analy-
sis.

Figure 6 shows a problem structure similar to that of the
“Spell Completion” feature. Comparing with Figure 5, the
“Dictionary” domain has a phenomenon “FileList” instead
of “WordList”, and the “Keyboard User“ does not have the
phenomenon “s”. We use this diagram to explain how we
compute the similarity metrics.



c: B!{getWordAtCursor,replaceWordAtCursor}
l: KU!{WCCommand, i Ctrl-X}

m: SCF!{PartialWord, CompletedWord}
n: D!{FileList}
q: ACF!{ReplaceWord}

Figure 6. Enriched Problem Diagram for Auto
Completion Feature

4.3 Computing similarity metrics

As mentioned in the solution structure extraction step,
two relations are created from the trace, namely call and
contain. Such relations are kept in Rigi format [31] such
that an efficient relation calculator such as crocopat [6] is
used to compute the similarity metrics. A similarity is de-
fined by the ratio of the size of the intersection set over the
size of the union set.

R =
|I|
|U |

where R, I, U stand for the ratio of intersection size over
union size.

We define a similar metric ratio Rkind for each kind of
set being compared, while kind is one of the following:
• func: a set of functions;

• call: a set of call relations;

• file: a set of file modules; and

• acall: a set of abstract call relations.

The above sets are derived from the two given relations
call and contain, expressed as derived relations by the fol-
lowing rules in the Crocopat syntax:
function(x) := EX(y, call(x, y) | call(y, x));
file(x) := EX(f, contain(x, f));
acall(x, y) := EX(f, g, call(f, g)

& contain(x, f) & contain(y, g));

where EX is an existence operator.
For any two versions v1 and v2, the above relations

are expanded with one term such that they can be com-
puted together. For example, function(x) is expanded to
function(v, x).

The above metrics are thus computed as follows:

Ifunc(v1,v2,x):= function(v1,x) & function(v2,x);
Ufunc(v1,v2,x):= function(v1,x) | function(v2,x);
Rfunc(v1,v2):= #(Ifunc(v1,v2,x))/#(Ufunc(v1,v2,x));

Here # is an operator in crocopat to compute the size of
tuple sets.

Furthermore, we compute subcallgraphs at different ab-
straction levels, as defined inductively by the depth from the
root functions: a function is at the depth level l, if and only
if it is at the depth level l − 1 or being called by a function
at the depth l − 1, when l > 1. When l = 0, only the root
functions, those without callers are considered. The MAX
level degenerates to the whole call graph.

root(MAX, v, x) := function(v, x);
root(0, v, x) := function(v, x) &

! EX(y, call(v, y, x));
root(n+1, v, x) := root(n, v, x) &

! EX (y, !root(n, v, y) & call(y, v, x));
call(l, v, x, y) := call(v, x, y)

& root(l, x) & root(l, y);
acall(l, v, x, y) := EX(f, g, call(l,v,f,g)

& contain(v, x, f) & contain(v, y, g))

On the basis of these subcallgraphs, we can compute the
similarity metrics again. The aim is to check whether an
abstract problem structure can be mapped onto a concrete
solution structure, without affecting the similarity metric.
If the similarity metric is useful to establish the problem
structure to solution structure, then the two abstractions will
not look much different when more detailed functions are
included.

When a module is not added or deleted, the previous
metrics cannot tell whether the functions inside the mod-
ule are changed. Therefore we define two more relations to
show the exact similarity ratios for the modules file and the
module relations acall:

IfileExact(l, v1, v2, f) := Ifile(l, v1, v2, f)
& ! EX(x, root(l, v1, x) &

contain(v1, x, f) & !contain(v2, x, f))
& ! EX(x, root(l, v2, x) &

!contain(v1, x, f) & contain(v2, x, f));
IacallExact(l,v1,v2,f,g) := Iacall(l,v1,v2,f,g)

& ! EX(x,y,call(l, v1, x, y) &
contain(v1, x, f) & contain(v1, y, g) &
! (contain(v2, x, f) & contain(v2, y, g)))

& ! EX(x,y,call(l, v2, x, y) &
contain(v2, x, f) & contain(v2, y, g) &
!(contain(v1, x, f) & contain(v1, y, g)));

Informed by the similarity metrics between different re-
quirements in the same version and between different ver-
sions of same requirement, one can see whether it is useful
to recover an initial problem structure.

In terms of problem frames, a problem domain corre-
sponds to a module, and a shared phenomenon corresponds
to an abstract call between two modules. For example, the
similarity metric between Figure 5 and Figure 6 problem
structure is 1.0 for the exact shared phenomena and 0.6 for



the exact domains. This shows that the two features are
similar.

1 2 3 4 MAX
0

0.2

0.4

0.6

0.8

1

RfileExact
RacallExact

Figure 7. The similarity metrics for diagrams
in Figures 5 and 6

5 Evaluation of Our Approach

We evaluated our approach4 by looking both horizontally
at different requirements within the same version as well
as vertically at the evolution of requirements over different
versions.

We first instrumented every released binary of Vim by
the tracing aspect. Then we extract execution traces for each
feature by automated testing. We excluded the functions
beyond the scope of testing, such as the initialization and
finalization parts of the log, such that only function calls
relevant to the functionality of the feature are recorded.

For any pair of the traces, we can measure their similarity
at abstraction levels ranging from 1 to MAX, where MAX
is the longest depth of the refinements.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 MAX
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RFunc
Rfile
RfileExact
RCall
RACall
RacallExact

Figure 8. All similarity metrics for the “:set
spell” feature between versions 6.4 and 7.1.

Figure 8 presents all similarity metrics we defined in
Section 3.3 for the spell checking feature “:set spell” be-
tween releases 6.4 and 7.1. According to the documentation
of Vim, the spell checking feature is introduced in 7.0 and
it is one of the biggest features that distinguish the major
release 7 with 6. The test case thus should invoke differ-
ent functionalities: when entering “:set spell” command, a
command error is reported in 6.4, whilst a spell check is

4All data and analysing scripts are available for download at
http://mcs.open.ac.uk/yy66/vim-analysis.html.

called in 7.1. Yet both test cases should share some phe-
nomena in the “Keyboard User” domain. The similarity
metrics confirm this fact. Moreover, from Figure 8, one
can see that the ratios Rfile and Racall are sometimes above
0.5, indicating an over-estimate of the similarity. Two met-
rics we defined RfileExact and RacallExact would exclude
the files and abstract calls when they contain different sets
of functions or function calls respectively. Therefore, in the
remaining presentation, we only present these two metrics
for brevity.

For “:set spell” feature, Figure 9b compares releases 7.0
with 7.1 additionally. Also in addition, we show some
comparison of different features for the same release 7.0.
Conceptually, the RfileExact metric reflects domain similar-

(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19MAX
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RfileExact
RacallExact

(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 MAX
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

RFileExacl
RACallExact

(c) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 MAX
0

0.05

0.1

0.15

0.2

0.25

RfileExact
RacallExact

(d) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 MAX
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RfileExact
RacallExact

Figure 9. Exact similarity metrics: for the
same “:set spell” feature compare similarity
betwen (a) versions 6.4 and 7.1 (b) versions
7.0 and 7.1; for the same release 7.0, compare
similarity between (c) “:set spell” and “i Ctrl-
X” (d) “:set spell” and “i Ctrl-X s” .

ity in the solution structures where the RacallExact metric
reflects shared phenomena similarity in the solution struc-



tures. The similarity in the first case is as low as 0.11 in
terms of RacallExact, indicating that other than the com-
mon subproblem of issuing the “:set spell” command, there
is little in common between the two versions. On the other
hand, the similarity between 7.0 and 7.1 is above 0.95, indi-
cating that the feature implemented in 7.0 is very similar to
that of of 7.1, which confirms the Vim documentation that
“7.1 is a bug fix release of 7.0”.

On the other hand, the comparison of two features in
the same release is also interesting, which may show how
similar two requirements may look like. In Figure 9c and
9d we show two pairs of such comparison. The similar-
ity between the features “Spell Completion” (i Ctrl-X s)
and “Spell checking” is significantly higher than that be-
tween “Completion” (i Ctrl-X)and “Spell Checking” (“:set
spell”).

Comparing horizontally the different abstraction levels,
Figure 9 reveals that starting from the most abstract struc-
ture (with only one level function call), until the MAX con-
crete solution structure, all the metrics are smoothly con-
verging. And the variation from the converged MAX metric
by metrics of abstract level 3 is already very narrowed. This
observation indicates that by analyzing the solution struc-
tures at a high level, one may have a better idea about the
similarity of the detailed solution structures. Informed by
this observation, therefore one may consider mapping the
abstract solution structures onto initial problem domains for
a problem analysis.

Finally, we perform a pair-wise comparison for the fea-
tures we explained in our earlier running example. The re-
sults are compiled into correlation matrices in Table 1.

From Table 1, one can observe that the similarity met-
rics do provide a good indicator whether two features are
similar in the solution structures. Therefore, we believe that
one may apply these metrics on the problem structures for
early assessment of new requirements. If the requirements
have large similarity in terms of the metrics to the existing
solution structures, then there is good chance that the im-
plementation could share largely with existing solutions.

The metrics on the problem domains can be similarly
defined as RdomainExact and RsharePheonomenaExact
where each domain is a node (similar to the file modules in
the case study) that may contain a number of domain prop-
erties (phenomena). When the phenomena are shared by
domains, a link is formed similar to the call relation in this
case study. We have measured these metrics on the prob-
lem diagrams early to find similar patterns as the solution
structure. It is future work to measure them for more case
studies and different types of solution structures to see if
the hypothesis of correlation in problem/solution structure
holds in general.

Table 1. Correlation matrices between feature
similarity metrics

(a) Abstraction Level = 3
RfileExact i Ctrl-X setspell i Ctrl E i Ctrl-X s

i Ctrl-X 1.00 0.26 0.20 0.38
setspell 0.26 1.00 0.15 0.67
i Ctrl E 0.20 0.15 1.00 0.18

i Ctrl-X s 0.38 0.67 0.18 1.00
(b) Abstraction Level = MAX

RfileExact i Ctrl-X setspell i Ctrl E i Ctrl-X s
i Ctrl-X 1.00 0.22 0.11 0.22
setspell 0.22 1.00 0.19 0.47
i Ctrl E 0.11 0.19 1.00 0.18

i Ctrl-X s 0.22 0.47 0.18 1.00
(c) Abstraction Level = 3

RacallExact i Ctrl-X setspell i Ctrl E i Ctrl-X s
i Ctrl-X 1.00 0.17 0.25 0.46
setspell 0.17 1.00 0.29 0.65
i Ctrl E 0.25 0.29 1.00 0.23

i Ctrl-X s 0.46 0.65 0.23 1.00
(d) Abstraction Level = MAX

RacallExact i Ctrl-X setspell i Ctrl E i Ctrl-X s
i Ctrl-X 1.00 0.27 0.16 0.44
setspell 0.27 1.00 0.22 0.63
i Ctrl E 0.16 0.22 1.00 0.15

i Ctrl-X s 0.44 0.63 0.15 1.00

6 Related Work

A detailed survey on reverse engineering has been done
in [10], so we will focus here on approaches using dynamic
analysis [5] for feature extraction [14]. The approach of
Wilde and Scully [30] uses dynamic analysis as a way of
identifying code belonging to a given feature. Wong et al.
[31] give automated metrics for determining the relation-
ships between features and code. Eisenberg et al. [13] uses
dynamic analysis to rank how likely code is to belong to a
given feature. Kothari et al. [22] use a similarity analysis to
identify canonical sets of features. Antoniol and Gueheneuc
[4] use a mixture of dynamic and static analysis and com-
bine several dynamic approaches to deal with uncertainty.
Rohatgi et al. [3] combine static and dynamic information
to measure the impact of a code change associated with a
feature on a given component, on the basis that this sug-
gests how likely the component is to be associated with the
feature. All of these approaches are aimed at classifying
code rather than constructing a requirements model.

The work of Lui et al [25] focuses on decomposing a pro-
gram into a base system and features determined by math-
ematical transformations of that base. The strength of their
approach is in providing a formal algebraic basis to un-



derpin feature extraction. However, their work is aimed at
support for program transformation rather than the capture
of requirements artifacts. One of the few works using dy-
namic analysis to reverse engineer source code with a view
to establishing traceability between problem and solution
domains is the PhD work of Greevy [14]. That work differs
from ours in that the goal is to extract a meta model of the
source code expressed using their language Dynamix.

Our work is related to the concept assignment prob-
lem associated with program comprehension [7], which ad-
dresses the discovery of human oriented concepts associ-
ated with code. Biggerstaff proposes an approach to this
problem based on machine reasoning that is opportunistic
and non-deterministic rather than algorithmic. Somewhat
in contrast to our work they assume the need to rely on a
priori knowledge of the problem domain.

There are a number of RE approaches that can be used
to investigate problem structures. The goal-oriented ap-
proach KAOS refines high-level goals into sub-goals and
then into operational requirements [29]. Operational re-
quirements are then assigned to agents in the solution space
[24]. Using a similar notion of goals and goal-refinement,
the NFR and i* framework discuss how goals may con-
tribute to achieving software quality [11, 32]. Based on
refactoring technique, a reverse engineering technique was
applied to source code to recover goal model structures[33],
where the focus is mostly on the structures in requirements.
The work presented here focusses on recovering structures
in the problem context which is complementary to the re-
quirements structure as exhibited in goal refinements. It is
our view that the problem structure can also be informed by
the structure of requirements and vice versa.

In this paper, we chose the the language and techniques
of the Problem Frames approach (PF) [20] to describe prob-
lem structures because (i) it provides mechanisms to con-
sider solution components in the problem space [15], (ii) it
allows known solution structures to influence problem de-
composition [27] and (iii) it can recompose subproblems
using a composition operator [23].

Acknowledging that the term feature has specific mean-
ings in specific areas of research such as product-line en-
gineering, and feature interactions, we adopted the general
notation of feature as a unit of system functionality that is
“user accessible” [19]. There is a considerable literature
on feature interaction problems in telecommunication [9]
and other application domains such as email [17]. Hay and
Atlee [18] treat feature interactions as a more general soft-
ware problem and discuss a feature composition approach
to resolve them.

7 Discussions and Conclusions

This paper examined the difficulty of adding new fea-
tures to legacy software systems with arbitrary structures.
We showed that some of the fatal bugs in software re-
sult from structural mismatch between the existing software
structure and that of the new feature. Many legacy systems
do not have accurate documentation about system structures
and this paper proposed a tool-support approach to recover
such information. Furthermore, the paper also showed that
analysis of the recovered problem structures can be useful
not only in identifying structural conflicts early in the de-
velopment, but also in an assessment of how difficult im-
plementation of a feature could be. We proposed a require-
ments metric which can be used to measure similarities be-
tween problem structures. Our study of Vim has shown that
there is indeed significant relationships between problem
structures of new features, and the amount of code restruc-
turing and coding their implementation involve. These re-
sults persuaded us that the approach we have proposed has
practical usefulness.

This work, however, can be improved in several ways.
We have applied the approach to examine the historical arte-
fact of Vim. Our analysis has been retrospective, and we
have not explored in detail how predictive this approach is.
This could be done, for example, by identify bugs in the lat-
est release of Vim, and having them validated by developers
of Vim (to see if what we identified as structural conflicts
are recognized as bugs), and to examine the current “to do”
list to assess the difficult of implementing some of these
features. To enable such a study, recovered models need to
be managed with the assistance of tool-support.

In order to show wider applicability of this approach, ap-
plications with different characteristics other than those of
Vim need to be studied too. There are several open-source
candidates for this line of work, such as Eclipse and Firefox.
We are currently perusing these research questions.

References

[1] http://www.vim.org/.
[2] http://www.vim.org/about.php.
[3] R. A., H.-L. A., and R. J. Feature location based on impact

analysis. In Proceeding (591) Software Engineering and Ap-
plications, 2007.
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