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1.1 Introduction
1
 

This paper discusses methods to evaluate Computer Assisted Assessment (CAA) systems, 

including some commonly used metrics as well as unconventional ones. I found that most of the 

methods to measure automated assessment reported in the literature were not useful for my 

purposes. After much research, I found a new metric, the Gwet AC1 inter-rater reliability (IRR) 

statistic (Gwet, 2001), that is a good solution for evaluating CAAs. Section 1.6 discusses AC1, 

but first I describe other possible metrics to motivate why I think that AC1 is the best available 

for evaluating an automated assessment system. 

I focus on two types of metrics that I label external and internal metrics. External metrics can 

be used for reporting and sharing results. Internal metrics are used for comparing results within 

a research project.  

Producers of CAAs need an easily understandable external metric to report results to 

consumers of CAAs, i.e., those wishing to use a particular system. In addition to reporting 

results to potential consumers, researchers may wish to share their results with other 

researchers. Finally, and perhaps most important for this dissertation, producers need an internal 

metric to quickly compare the results of selecting different parameters of the assessment 

algorithm. Many choices need to be made when implementing an LSA-based marking system. 

The LSA literature frequently leaves many of these choices unspecified, including number of 

dimensions in the reduced matrix, amount and type of training data, types of pre-processing, and 

weighting functions. The choice of these parameters is an intrinsic aspect of building an LSA 

marking system. Therefore, researchers need an adequate way to measure and compare the 

results of the various selections, as I shall explore in this chapter.  

                                                      

 

1 This paper is taken from a chapter in my as yet unpublished PhD dissertation. 
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Section 1.2 describes a simple metric that is often used for external reporting of results. 

Section 1.3 discusses existing ways to measure the success of LSA-based assessment systems 

and motivates the need for new metrics. Sections 1.3 and 1.4 discuss several standard statistical 

tests that could be used to measure the success of automated assessment systems and argue that 

none of them is suitable for my purposes. Section 1.5 discusses possible metrics that use the 

distance between two vectors for comparing automated assessment systems - the Manhattan 

distance (L1) and the Euclidean distance (L2). Finally, Section 1.6 explains and justifies the 

metric I chose to evaluate EMMA – the Gwet AC1 inter-rater reliability statistic and discusses 

how it overcomes the flaws of the better-known kappa statistic.. 

1.2 A simple metric (SM) 

A simple success measure is to determine the percentage of marks where two markers give 

identical marks. However, this simple metric (SM) gives an incomplete picture of the results. 

Consider the hypothetical case illustrated in Table 1-1. It shows how closely two markers agree 

with a third marker assumed to be the gold standard. Eighty percent of the answers marked by 

Marker A agreed exactly with the gold standard, 5% differed by 3 points, and 15% disagreed by 

4 points. Seventy-five percent of the answers marked by Marker B agreed exactly with the gold 

standard and 25% differed by 1 point. The SM awards 80% to Marking System A and 75% to 

Table 1-1 Hypothetical results for two markers that show the simple metric of the percent of identical 

scores for a four -point question hides important details 

 Marker A Marker B 

Point Difference between Markers 

and a “Gold Standard” 
% of questions 

0 80 75 

1 0 25 

2 0 0 

3 5 0 

4 15 0 
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Marking System B. Clearly, both markers have a high percentage of agreement, but which is the 

better marker - A or B? The SM says that A is better than B. However, even though A has a 

higher percentage of identical answers than does B, the latter has 100% of its marks disagreeing 

with the human by at most one point while A has only 80% of its marks disagreeing by at most 

one point and 20% that differ by three or more points. The flaw in the SM is that it gives no 

indication of the spread, or distribution, of the marks. Perhaps the SM is an acceptable external 

metric to use for reporting results to consumers, but it is inadequate for internal comparison 

purposes as I demonstrate in the remainder of this section. 

Table 1-2 uses the SM to evaluate the results of an experiment to determine the optimum 

amount of training data, which is one of the parameters for calibrating an LSA-based marking 

system.  

Finding the correct answer by studying this table is very difficult. Unfortunately, studying a 

graph turned out to be no easier. Indeed, this difficulty in interpreting the data was a major 

motivation for finding an alternative success metric. 

Table 1-2 Percentages of Agreement between Human and Computer when varying amount of training data 

# of 

Marked 

Answers

% Equal 

Scores

Tutor and 

Computer differ 

by ±1mark

Tutor and 

Computer differ 

by ± 2 marks

Tutor and 

Computer differ 

by ± 3 marks

Tutor and 

Computer differ 

by ± 4 marks

10 65 20 13 2 1

20 68 15 13 3 1

30 60 27 11 2 1

40 60 27 11 2 1

50 57 31 10 2 0

60 61 25 11 1 1

70 67 18 12 3 1

80 67 18 11 3 1

90 67 18 11 3 1

100 67 17 11 3 2

200 35 54 7 4 1

300 45 39 12 2 2

400 62 22 12 2 2

500 61 24 12 2 2

600 47 38 12 3 1

627 59 27 11 2 1  
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Figure 1-1 shows the information from Table 1-2 in graphical form. The figure contains a 

great deal of information, making it difficult to understand and interpret. How can one 

determine the best amount of training data by looking at this chart? The y-axis shows the 

percentage of marks. The x-axis shows the amount of training data. The data points show the 

percentage of marks where the human and the computer agree, or differ by from zero to four 

points. The first set of data points (marked by an open 0) indicates the cases where there was 

zero difference between the tutor mark and the computer mark, i.e., they are identical. The 

second set of data points (marked by a +) is where there was a difference of plus or minus one 

point. The fifth set (marked with an open square) indicates those questions with the worst 

results: either the tutor awarded four points and the computer awarded zero points, or vice versa. 

 

Figure 1-1 Comparison of human and computer marks for various amounts of training data 
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The legend to the right of the graph shows the correspondence between each set of data points 

and the amount by which the human and computer scores differ.  

The viewer can see all of the results for a particular amount of training data by looking at a 

vertical slice of the graph. For example, the vertical line in the graph shows that when 60 

training examples were used, EMMA matched the human about 61% of the time, differed by 

one point about 25% of the time, differed by two points about 11% of the time, differed by three 

points about 1% of the time, and differed by 4 points about 1% of the time. 

Looking at a vertical slice of the graph shows the performance of EMMA for a particular 

amount of training data. Looking at a horizontal set of data points gives another point of view. 

A data set shows how much the performance varies over different amounts of training data. For 

example, the set indicated with an x shows that the marks that differed by plus or minus two 

points ranged from about 7% for 200 training data items to about 13% for 10 and 20 training 

data items. 

I tried several different graphical ways to display the data – Figure 1-1 shows the clearest 

way I found. Even so, it is difficult to evaluate the overall effectiveness of varying the amount 

of training data by analysing this figure because it contains a lot of information, all of which is 

necessary to measure the results. Thus, the SM is not adequate for the internal purpose of 

evaluating various calibrations of the LSA algorithm. The next two sections discuss several 

other metrics and explain why I found them, like the SM, to be not useful for my work. 

1.3 The inadequacy of existing success measures  

The literature offers two widely used techniques to evaluate marking systems – precision and 

recall, and correlation. The following subsections describe them and suggest why they are 

inappropriate for evaluating CAAs. 

1.3.1 Precision and recall 

The first technique is the use of precision and recall; these measures are used widely in LSI 

and LSA research (Dumais, 1991; Manning & Schütze, 1999; Graesser, Wiemer-Hastings, 



  

 - 6 - 

Wiemer-Hastings, Harter & The Tutoring Research Group, 2000; Nakov, Valchanova & 

Angelova, 2003). Precision looks at how relevant the collection of retrieved documents is; it is 

the ratio of correctly retrieved, i.e. relevant, documents to all retrieved documents. Recall is a 

measurement of completeness. It is the ratio of correctly retrieved documents to all relevant 

documents i.e., those that were retrieved plus those that the retrieval system failed to retrieve 

(Foltz, 1990). As recall goes up, precision tends to go down; in the trivial case, a system 

achieves 100% recall if all the documents are retrieved, which would give the lowest precision. 

Information retrieval (IR) researchers plot values of precision for various levels of recall to 

provide a good picture of the effectiveness of their techniques (Dumais, 2003). The relevance to 

LSA and marking is that LSA retrieves the marked answers from the training data that are 

closest to the answer being marked. 

It is important to have a good metric to measure success when calibrating a marking system. 

Dumais, in a widely cited study (1991), used precision and recall to justify the use of log-

entropy as the weighting function in the term-frequency matrix. (The decision of a weighting 

function is a critical choice to be made by LSA researchers.) Nakov, Valchanova & Angelova 

(2003) used precision and recall figures to argue that the choice of a weighting function is the 

most crucial of all calibration techniques. Many researchers continue to justify the use of the 

log-entropy weighting factor (Foltz, Kintsch & Landauer, 1998) by relying on the early work of 

Dumais (1991). Although log-entropy may be the best weighting function, it should be justified 

for LSA-based assessment systems on research done with LSA-based assessment systems 

instead of IR systems. Researchers need to remember that Dumais is primarily interested in 

information retrieval rather than essay assessment.  

Although precision and recall are useful for evaluating IR techniques, I believe that using 

them to measure automated marking systems is irrelevant. Recall is not important – it makes no 

difference how many documents are returned because the marking system looks at only a pre-

determined number that are the closest matches to the document being marked. Precision, on the 

other hand, is very important – the documents judged by the marking system to be relevant must 

actually be relevant. Precision, however, is a binary measure. It assumes that the documents are 
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relevant or not. EMMA uses the cosine similarity measure to rank the documents in terms of 

how similar they are to the answer being marked. It then awards a mark by calculating the 

weighted average (using the cosine measure) of the five most similar answers. This feature of 

LSA provides a finer-grained measure than the technique of using precision and recall, which is 

better suited to information retrieval. 

1.3.2 Correlation 

The second technique to evaluate marking systems is statistical correlation, which is used by 

many researchers (Wiemer-Hastings, 1999; Foltz, Gilliam & Kendall, 2000; Perez, Gliozzo, 

Strapparava, Alfonseca, Rodriquez & Magnini, 2005). The most widely known correlation 

measures are Pearson’s r, Spearman’s rho, and Kendall’s tau_b (Dancey & Reidy, 2002). The 

formulas for the Pearson and Spearman measures given by Daniel (1977) are shown below. 

Spearman’s rho calculates the correlation by calculating the difference between each pair of 

data points, or ranks. Daniel gives a correction if there are many tied ranks (1977 p. 364). 

Equation 1-1 The Pearson correlation coefficient  

 

 

 

X and Y are the two variables being correlated and n is the number of cases. 

 

Equation 1-2 The Spearman rank correlation coefficient 

 

n is the number of cases, d is the difference between the ranks 

Kendall’s tau is based on concordant and discordant pairs (Stegmann & Lucking, 2005). 

Equation 1-3 gives the formula. Given 2 observations: ),( ii yx  and ( )
jj yx ,  they are: 

concordant if when xj > xi then yj > yi 

discordant if when xj > xi then yj < yi 
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tied if xi = xj and/or yi = yj   

 

Equation 1-3 Kendall's tau 

                                                                                  

where nc = number of concordant pairs 

and nd = number of discordant pairs 

Pearson’s r is used when data are normally distributed. For many marking schemes, the 

marks are negatively skewed, i.e., the tail on the distribution graph goes to the left (Rowntree, 

2004 p. 59). This trait occurs because markers tend to give high, rather than evenly distributed, 

marks. Figure 1-2 gives an example of a skewed distribution. The data are taken from the corpus 

and are typical of all of the questions I have examined. The figure shows that the data are non-

normally distributed and thus a non-parametric test (e.g., Spearman’s rho or Kendall’s tau_b) is 

the appropriate choice (Dancey & Reidy, 2002; Rowntree, 2004 p. 125).  

Correlation statistics indicate how well one variable can be used to predict another variable. 

If human-assigned marks and computer-assigned marks agree, the correlation would be perfect. 

Even if the human marks were always twice the computer marks, the correlation would once 

again be perfect. In this case, a good correlation would not mean a good marking system.  
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Figure 1-2 Histogram showing that marks are non-normally distributed 
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Another problem with the correlation statistic is that it would be low in the case where 

computer marks are off by plus-or-minus one point. In this situation, the computer mark could 

not be used to predict the human mark even though I argue that the overall results of the 

marking system would be very good if all the contradictory marks differ by only one point in 

either direction. For these reasons, the standard correlation statistics may not be useful for 

evaluating automated marking systems. 

Table 1-3 shows various correlation coefficients for the case where two markers have 96% 

identical marks, and 4% where they differ by two points. For one mark, marker 1 scored higher 

than marker 2 and in the other case, scored lower than marker 2. Intuition would lead one to 

expect a high correlation between these two markers because they agree exactly on 96% of the 

marks, but SPSS calculates essentially zero correlation between the two markers. This example 

Table 1-3 Output from SPSS that shows no correlation for two markers who have 96% identical answers 

 

m1 * m2 Crosstabulation

Count

0 1 1

1 48 49

1 49 50

2

4

m1

Total

2 4

m2

Total

 
 

Symmetric Measures

-.020 .014 -.722 .470

-.002 .002 -.722 .470

-.020 .014 -.141 .888c

-.020 .014 -.141 .888c

50

Kendall's tau-b

Kendall's tau-c

Spearman Correlation

Ordinal by

Ordinal

Pearson's RInterval by Interval

N of Valid Cases

Value

Asymp.

Std. Error
a

Approx. T
b

Approx. Sig.

Not assuming the null hypothesis.a. 

Using the asymptotic standard error assuming the null hypothesis.b. 

Based on normal approximation.c. 
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shows that the traditional correlation statistics fail the common sense test and are not applicable 

to the problem of comparing the similarity between human and computer markers. 

Section 1.4 looks at a traditional statistical test (and its non-parametric variations) and 

explains why it, also, failed to help evaluate my automated marking system. 

1.4 Problems with the traditional t-test 

Having considered and rejected the metrics described in Section 1.3, I turn to the traditional 

t-test as a candidate for evaluating automated marking systems. It comes in parametric and non-

parametric versions. The parametric tests are more powerful than the non-parametric versions 

but the data must meet three assumptions to use them: normally distributed populations, 

approximately equal variations of the populations, and no extreme scores.  

The t-test compares the means of two groups. For marking systems, one group is the human-

assigned scores and the other group is the computer-assigned scores. When all participants take 

place in both conditions (short answer marked by tutor and short answer marked by EMMA), 

the study design is known as within-participants (also called repeated measures or related 

design) and the appropriate parametric statistical test for comparing the groups is the t-test  

(Dancey & Reidy, 2002). The SPSS output of the t-test includes the mean scores for each group, 

the difference between them, and the standard deviations. With these values, one can compute 

the effect size, which is the difference of the means divided by the mean of the standard 

deviations. Confidence intervals around the effect sizes are an additional tool for evaluating 

results  (Aberson, 2002). Therefore, if the data meet the three assumptions for using parametric 

tests, employing effect sizes with confidence intervals could be a good way to evaluate 

automated marking systems. 

Unfortunately, I cannot use the t-test and effect sizes with confidence intervals because my 

data are not normally distributed, as suggested by Figure 1-2. The marks given by tutors are 

highly negatively skewed because the marks tend to cluster towards the high end of the marking 

scale. If the marks are not normally distributed, the effect sizes and confidence intervals will be 

incorrect (Thompson, 2002) and the t-test is not applicable. I can, however, use the Wilcoxon 
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signed ranks test, which is the non-parametric version of the t-test. This test statistic is 

calculated by ranking the differences between the two scores. But the scores with zero 

difference are ignored because “they do not give us any information” (Dancey & Reidy, 2002).  

There are two problems with the Wilcoxon t-test. The first problem is the elimination of 

those cases where the difference is zero. Dancey & Reidy (2002) claim that these cases do not 

give us any information, which may be true when trying to establish that there is a difference 

between two groups. However, when evaluating marking systems, I want to establish that there 

is no difference between two groups or that the difference is very small. If, for example, a 

marking system produces marks that agree with the human 95% of the time, that figure is 

informative, contradicting one of the assumptions of the Wilcoxon test. I need a test statistic that 

takes into account the number of cases where the difference between two marks is zero. 

The second problem with the Wilcoxon t-test is that it shows whether two groups are 

different but not by how much. To solve that problem, I can look at the mean difference given 

by the descriptive statistics – no difference or very small differences would allow me to 

conclude that there is no significant difference between two groups. However, as mentioned 

earlier, calibrating an LSA-based marking system is critical. How should I compare the results 

of calibrating the system? I cannot use mean differences by themselves; I must consider the 

standard deviations. This requirement leads me back to effect sizes, but the results will be 

invalid because my data are not normally distributed.  

For the reasons given above, I cannot use correlation statistics, t-tests, or effect sizes with 

confidence intervals. Section 1.5 presents possible alternative metrics and provides an example 

of using them to evaluate test results.  

1.5 Success metrics using the distance between two vectors  

The inability to locate an appropriate metric, as described in previous sections, combined 

with the difficulty in interpreting Figure 1-1 and Table 1-2, led me to investigate two metrics 

from the field of vector space theory. The Manhattan Distance measure (L1) and the Euclidean 

Distance measure (L2) are two metrics used to calculate the distance between two vectors 
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(Gerald & Wheatley, 1970). Their application to marking exams is as follows. One vector is the 

list of scores given to a question by one marker; the other vector is the list of scores assigned by 

another marker. If the vectors are identical, the distance between the vectors is zero and the two 

markers would agree perfectly. 

The measures are calculated using the well-known formulas (Gerald & Wheatley, 1970) 

shown below. These formulas compute the distance between the vectors in slightly different 

ways. The L1 computes the sum of the differences between each point in the two vectors; the L2 

computes the square root of the sum of the squares of the differences.  

 

Equation 1-4 The Manhattan Distance (1 norm, or L1): 

 

 

 

Equation 1-5 The Euclidean Distance (2-norm, or L2):            

 

                      

where X = (x1, x2, xn) and Y = (y1, y2, yn) are two n-dimensional vectors  

The L1 and L2 metrics provide a figure that could be used to assess the results of the 

different experiments quickly. Table 1-4 shows the same information as Table 1-2 except that it 

includes L1 and L2 and is sorted by L2. This table shows that 50 is the amount of training data 

that corresponds to the best outcome for this question using either L1 or L2 as the metric. This 

evaluation agreed with a careful hand analysis, taking into consideration the number of marks 

that differ by 1 or more points, of all of the numbers given in Table 1-2. 
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The Manhattan and Euclidean distance measures at first seemed to be promising tools for 

automated marking researchers to evaluate their systems.  Unlike the simple metric (SM) these 

two metrics take into consideration the values of agreement between human and computer over 

the whole range of possibilities. That is, they evaluate the results where human and computer 

marks are identical, where they are off by plus or minus one point, plus or minus two points, 

and so on until the worst result which is where the human and computer differ by the maximum 

point value of the question. The SM uses just the value where the human and computer marks 

are identical and can lead to ambiguity, as demonstrated in Table 1-1. L1 and L2 give a richer 

picture of the effectiveness of an automated marking system than the SM and are no more 

difficult to analyse than the SM. There are, however, two problems with them. The first problem 

is that they are not widely used for evaluating CAAs and no agreed upon cut-off levels exist. 

The second and more serious problem arises when comparing answers with differing point 

values. The problem arises because neither L1 nor L2 is normalised, so that the distance 

between vectors cannot be compared in a sensible manner. 

Table 1-4 Result of varying the amount of training data - sorted from best to worst 

# of 

Marked 

Answers

% Equal 

Scores

Tutor and 

Computer 

differ by ±1

Tutor and 

Computer 

differ by ± 2

Tutor and 

Computer 

differ by ± 3

Tutor and 

Computer 

differ by ± 4

Manhattan 

Distance 

L1

Euclidean 

Distance 

L2

50 57 31 10 2 0 93 9.6

60 61 25 11 1 1 95 9.7

30 60 27 11 2 1 97 9.8

40 60 27 11 2 1 98 9.9

627 59 27 11 2 1 100 10.0

10 65 20 13 2 1 105 10.2

80 67 18 11 3 1 107 10.3

70 67 18 12 3 1 108 10.4

20 68 15 13 3 1 109 10.5

90 67 18 11 3 1 110 10.5

100 67 17 11 3 2 114 10.7

500 61 24 12 2 2 116 10.8

400 62 22 12 2 2 119 10.9

200 35 54 7 4 1 122 11.1

600 47 38 12 3 1 124 11.1

300 45 39 12 2 2 133 11.5  
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1.6 The inter-rater reliability statistics 

This section discusses two statistics used for inter-rater reliability – Cohen’s kappa and 

Gwet’s AC1. Kappa is the better known of the two. AC1, first introduced in 2001 (Gwet), 

corrects some of the deficiencies of kappa. 

1.6.1 The problem with the kappa inter-rater reliability statistic 

Cohen’s kappa statistic is used for inter-rater reliability (Cohen, 1960). I tried this measure 

and then discarded it because it gave me non-sensible results. I had instances where EMMA and 

the human raters agreed by as much as 97% but the kappa statistic was close to zero, indicating 

no correspondence. I was reassured to find a paper by two researchers that gave an example of 

what they called an “absurd kappa value” (Stegmann & Lucking, 2005). Table 1-5 shows the 

example they used – it was taken from another paper (DiEugenio & Glass, 2004). In each of the 

experiments illustrated, the observers agreed in 90% of the cases but one case showed a high 

kappa figure of 0.8 while the other showed essentially no agreement at kappa =  -0.0526. The 

problem with the kappa statistic suggested by Table 1-5 was first documented by Feinstein and 

Cicchetti (1990) as summarised in their abstract: 

In a fourfold table showing binary agreement of two observers, 

the observed proportion of agreement, P0 can be paradoxically 

altered by the chance-corrected ratio that creates κ as an index of 

concordance. In one paradox, a high value of P0 can be 

drastically lowered by a substantial imbalance in the table's 

marginal totals either vertically or horizontally. In the second 

pardox, (sic) κ will be higher with an asymmetrical rather than 

Table 1-5 Tables illustrating a balanced (left) and a skewed (right) distribution 

Observer A   Observer A Observer 
B 1 2 

Total 

  

Observer 
B 1 2 

Total 

1 45 5 50   1 90 5 95 

2 5 45 50   2 5 0 5 

Total 50 50 100   Total 95 5 100 

         

kappa = .8  kappa = an "absurd" -0.0526 
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symmetrical imbalance in marginal totals, and with imperfect 

rather than perfect symmetry in the imbalance. An adjustment 

that substitutes Kmax for κ does not repair either problem, and 

seems to make the second one worse. 

 

DiEugenio & Glass (2004) explain the problem in more accessible language: “κ is affected 

by skewed distributions of categories (the prevalence problem) and by the degree to which the 

coders disagree (the bias problem).” 

Researchers in several disciplines have noted the problems with the kappa statistic and have 

begun to use the AC1 statistic. Chan, in a statistics tutorial for the medical profession (2003), 

provides an example where kappa gives strange results because one of the rater categories has a 

small percentage. He recommends the use of AC1. Several researchers in the field of software 

process improvement (Huo, Zhang & Jeffrey, 2006) suggest the use of AC1. Two computational 

linguists interested in the automatic classification of documents (Purpura & Hillard, 2006) 

suggest the use of AC1. Another group of computational linguists interested in classifying 

documents (Yang, Callan & Shulman, 2006) use AC1. Two researchers at the Dartmouth 

Medicine School (Blood & Spratt, 2007) recommend the use of AC1 and have created and made 

freely available a macro for the statistical package SAS. However, they caution that AC1 is still 

a new statistic:  

“Although the AC1 and AC2 statistics are about five years old 

now, they remain infants in the statistical world, especially since 

so few people have been exposed to them. With greater usage 

will come greater scrutiny, and with greater scrutiny may come 

identification of problems inherent in these statistics. Therefore, 

as is always the case with new statistics, caution should be 

exercised in their use and further examination should occur 

before they are adopted as the standard.” 

The next subsection describes the Gwet AC1 statistic. 
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1.6.2 The Gwet AC1 inter-rater reliability statistic 

Kilmer Gwet has written extensively about the problems of the kappa statistic and has 

proposed AC1 (2001; 2002a; 2002b), which he claims overcomes the problems with kappa. 

What follows, except where noted, comes from (Gwet, 2002a). The explanation is for the 

simplified case of two raters and two categories of ratings. Gwet uses the following table in his 

formulas. “A” is the number of times both raters gave a rating of “1”. “B” is the number of 

times rater A gave a “2” when rater B gave a “1”. “A1” is the total number of times Rater A 

gave a “1” and “A2” is the total number of times Rater A gave a “2”. N is the total number of 

observations. 

 

 

 

 

 

 

 

 

 

 

According to Gwet (2001), the kappa formula takes the form of Equation 1-6. It is equivalent 

to the SM discussed in Section 1.2 corrected by the probability of chance agreement. He shows 

an example similar to Table 1-5 and claims that kappa can be misleading, “especially when the 

sum of the marginal probabilities is very different from 1”. He claims that kappa incorrectly 

overstates the correction due to chance agreement.  

 

Equation 1-6 The kappa formula   

 

where p = the overall agreement = 
N

DA+
 

Table 1-6 Distribution of subjects by rater and response 

category 

Rater A  

Rater B 1 2 Total 

1 A B B1=A+B 

2 C D B2=C+D 

Total A1=A+C A2=B+D N 

 

( )
( )κ
κ

e

ep
kappa

−
−

=
1
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and e(κ) = the chance agreement probability = 
N

B

N

A

N

B

N

A 2211
∗+∗  

and A, A1, A2, B1, B2, D, and N are the figures in Table 1-6.  

Equation 1-7 shows Gwet’s AC1 statistic.  

 

Equation 1-7 Gwet's AC1 

where ( ) ( )11 12 PPe −=γ  

( )
N

BA
P

2/11
1

+
=  

and 
N

DA
p

+
=  

and  

AC1 = the first order agreement coefficient   

e (γ) = the chance-agreement probability 

P1 = the approximate chance that a rater classifies a subject into category 1 

A1 = the number of times a rater, A, classifies a subject into category 1 

A = number of times both raters classifies a subject into category 1 

D = number of times both raters classifies a subject into category 2 

p = the overall agreement 

Equation 1-7 shows how to calculate AC1 for the simple case of two raters and two rating 

categories. Blood & Spratt (2007) give the formula for the general case. I implemented this 

formula in Java and used it to evaluate the results I have from EMMA. 

 

Equation 1-8 The AC1 formula for the general case 
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where 
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
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and 
( )

q

Q

q

qe
Q

p ππγ −
−

= ∑
=

1
1

1

1
 

and ∑
=

=
n

i

iq

q
r

r

n 1

1
π

 

P
a
 = the overall agreement probability 

P
eγ

 = the chance-agreement probability 

 r
iq 

= the number of raters who classified the ith object into the qth category. The 

index i range from 1 to n and q ranges from 1 to Q  

n = the number of objects rated  

Q = the number of categories in the rating scale 

r = the total number of raters  

π
q
= the probability that a rater classifies an object into category q 

1.7 A worked example 

I demonstrate the use of the kappa and AC1 formulas first with the balanced example and 

then with the skewed example given in Table 1-5. Table 1-7 summarises the results. 

1.7.1 Balanced distribution 

9.
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+
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+
=
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p  
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1.7.2 Skewed distribution 
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 This worked example shows that kappa gives a result for a skewed distribution that fails the 

common sense test and confirms the work of various researchers (Feinstein & Cicchetti, 1990; 

Gwet, 2002a; Stegmann & Lucking, 2005; Blood & Spratt, 2007). It also supports Gwet’s claim 

that AC1 is a “more robust chance-corrected statistic that consistently yields reliable results” 

(Gwet, 2002a). 
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Table 1-7 Comparison of kappa and AC1 for balanced and skewed distributions shown in Table 1-5 showing 

that kappa gives a strange result for a skewed distribution 

 Balanced 

Distribution 

Skewed 

Distribution 

kappa 0.8 -0.05 

AC1 0.8 0.89 
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